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1-1 Binomial/Pascalmatrix P 
 

Abstract: The most basic identities for all chapters are shown here. As far as proofs are 
widely obtainable I omit them here; some are own derivations with the possible, but unlike-
ly chance of being in error. The discussion of the row~ or column-signed versions of P is 
separated in another article, due to the importance of some aspects (like Eigenvector-
decompositions and its consequences), which do not apply to the unsigned version. 
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1. Basic definitions and identities 

1.1. The "Pascal"~/ binomialmatrix 

The Pascalmatrix contains just the binomial-coefficients in a lower triangle: 

(1.1.1.) P := Pr,c = binomial(r,c) 

(if c>r Pr,c = 0) 

 
 

1.2. Matrix-logarithm 

The Pascalmatrix can be seen as matrix-exponential of the subdiagonal-matrix of the natural numbers. 
Using the matrix-function Sd(d,vec) providing the entries of vec in the d'th subdiagonal, it is 

 L =Sd(1,Z(-1)) 

     

(1.2.1.) P =exp(L) 

exp( ) =  

 

Proof: see chapter "Details/Proofs", Proof_MatExp 

 

1.3. Powers 

1.3.1. Matrix-multiples / integer powers 

The integer powers can be expressed  

* either by iterative computation of the appropriate powers   
* or by pre- and postmultiplication with a powerseries vector (similarity scaling)  
* or by elementwise multiplication ("Hadamard-multiplication") with a Toeplitz-matrix  
* or using the multiple of its matrix-logarithm.  

The last three ways are essentially the same. Because of the triangular structure all ways can also be 
used for infinite dimension. 

(1.3.1.1.) P n =P * P n-1  

 *   =  
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The result can also be seen as the Hadamard-product of P with the triangular Toeplitzmatrix of the po-
werseries vector V(n) or equivalently as pre- and postmultiplied  

(1.3.1.2.) P n  = P ☼ Toeplitz(n)   = P ☼ (V(n) *V(1/n)~ ) 
  = dV(n) * P *  dV(1/n)  
  = exp( n* L) 

 

 ☼   =  

Proof: see powers  

 

 

 

1.3.2. Reciprocal ("inverse" for finite dimension) 

The reciprocal can be determined in different ways: it can be computed by iteratively solving the ma-
trix-equation P * P-1 = I or using the rules of exponentiating and P's matrix-logarithm  

 L = log(P),     P-1 = exp(-L) 

since the inverse/reciprocal is the power to the exponent -1. The result is, that the reciprocal is the fol-
lowing product of J and P: 

(1.3.2.1.) P-1 =J*P*J 

Σk=1..r [(-1)c-k * bi(r,k) * bi(k,c) ] = δr,c  

where δ is the Kronecker-delta 
  = 0      if r<>c 
  = 1      if r=c  ... 

  

*   

 =  

 

(1.3.2.2.) P -1 =P ☼ Toeplitz(-1)  
  = dV(-1) * P *  dV(-1)  
  = J * P *  J  

 

 ☼   =  

(for more information about the triangular unit matrix , which occurs in the latter example, see there) 
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1.3.3. General powers 

General powers of P can be computed, since the general power is the exponential of scalar multiples of 
the matrix-logarithm.  

Example: exp(2*L) = P2  

 

2 L =Sd(1,2*Z(-1)) 

P2 =exp(2 L) 

exp( ) =  

 

Arbitrary complex powers using the parameter a with 

(1.3.3.1.) P a  = P ☼ Toeplitz(a)  
  = P ☼  ( V(a) * V(1/a)~ ) 

are also equivalent to  

(1.3.3.2.)  P a  = exp(L*a)  

The logarithm-representation makes thing very clear, so the general case is explicitely shown here:  

(1.3.3.3.) P a = dV(a) * P * dV(a)-1  

L =Sd(1,a*Z(-1)) 

        

Pa =exp(L*a) 
    = P ☼ Toeplitz(a) 

exp( ) =  

 

1.4. P as operator on powerseries 

Using powerseries the pascalmatrix behaves like an operator: input and output form instances of the 
same type: powerseries. The imagination of P as an application of an operator helps much in understan-
ding some complicated relations, for instance summing up to zeta()-values but even summing zeta()-
values to rational numbers can easily be described, not to mention problems concerning sums of like 
powers and the like. More in these aspects are in the various articles. 
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1.5. Links to more specific variants 

1.5.1. The signed version 

The column- and row-signed versions have very interesting properties, which are discussed in a sepa-
rate article due to their relevance. For instance, they have an interesting Eigensystem, which uncovers a 
neat relation to the matrix of coefficients, with which Jacob Bernoulli solved the problem of summing 
like powers.  

(1.5.2.) PJ := PJ r,c = (-1)c *binomial(r,c) // if r>=c 
(1.5.3.)      = P * J  

 

(1.5.4.) JP := PJ r,c = (-1)r *binomial(r,c) // if r>=c  
(1.5.5.)      = J * P  

 

See :  

 

1.5.6. Power- and exponential-series 

The powerseries of P itself pops up as a very interesting entitiy after one had stepped to see the Pascal-
matrix as an operator on powerseries. What, if I apply it two times? What if many times? What if I sum 
all powers of it? The result of the alternating powerseries of P is a matrix, called ETA, which performs 
alternating summing of like powers, and also its supplement, the matrix ZETA is introduced, which 
performs summing of like powers  - the both matrices are somehow implementations of a discrete inte-
gration-operator. 

Also PE, the sum of the exponential-series of P itself (exp(exp(L)) seems to be an interesting object in 
some contexts. In the Online Encyclopedia of Integer Sequences (OEIS) the columns of PE occur as 
sequences, which describe combinatorical problems, seemingly without observed relation to each other. 
PE and its inverse PE-1 connect then such sequences to a common framework. 

see:  

1.5.7. Hierarchy of orders of binomial-matrices Pk  

Modifying the matrixlogarithm of P in meaningful ways leads to two different hierarchies of matrices, 
where P is then the instance of order 1.  

One is the hierarchy of powers of the entries of L, where the second order matrix is then closely related 
to the "Laguerre"-matrix, and the zero-order matrix implements a very basic exponential "operator".  

The other is the hierarchy of powers of L itself; the zero'th order is of little interest since it is simply the 
unit-matrix scaled by the exponential of 1; but the second order matrix GS occurs in connection with 
the Gauss-normal function and allows to formally describe coefficients for the Erf-function and higher 
integrals (where, however, the occuring series are divergent) 

See:  
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2. Operations using P with vectors and matrices (rowsums/columnsums etc) 

2.1. Rightmultiplication 

2.1.1. Rowsums and right-multiplication with powerseries (binomial theorem) 

The rowsums are known as powers of 2: 

(2.1.2.) Σ c=0..r bi(r,c) = 2r  

Summing expressed as matrix-multiplication 
(2.1.3.) P * V(1) = V(2) 

 

  

 

More general than the simple rowsums, the right-multiplication by a powerseries means to apply the 
binomial-theorem. 

The sums of powerseries weighted by the binomial-coefficients produce just a shift of the base by 1. 

Example: (the right-multiplicator is here given as a list of columns to have a group of examples in one table) 

(2.1.4.) Σ c=0..r n
c binomial(r,c) = (n+1)r  

 
 

*   

 =  

 

This binomial-relation is valid for any complex exponent s: 

(2.1.5.) Σ c=0..r s
c bi(r,c) = (s+1)r  

 
(2.1.6.) P * V(s) = V(1+s)   // for all complex s 

*  

 =  

Also, referring to the chapter about complex powers we may state: 

(2.1.7.) P-s * V(s) = V(0)     
 
(2.1.8.) Pt * V(s) = V(t+s)   // for all complex s and t 
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2.1.9. right-multiplication with unsigned and alternating harmonic/zeta-series 

The right-multiplication with a zeta-like-series does not give a smooth result like the above. However, 
with nonnegative integer argument s for the exponent of the alternating zeta-series an interesting result 
can be found. The resulting matrix X is then the factorial-scaled transposed matrix of the Stirling-
numbers of 2'nd kind. (See more about this in the article Stirlingmatrix). 

for an integer exponent n  
(2.1.10.) Σ c=0..r (-1)c cn bi(r,c) = (-1)r *r!*St2 r,n  
 
for all columns of ZV 
(2.1.11.) P * dZV = J * dF(1) * St2~   

  

 

The decomposition of X shows the transpose of ST2, the triangular matrix of Stirlingnumbers of 2'nd 
kind: 

 *  *   

 

=   

 

 

2.1.12. right-multiplication with binomial series 

The right-multiplication with its transpose yields the binomial-matrix itself, but in square-array-form: 

(2.1.13.) P * P~ = X,   
 where 
 X:=Xr,c = bi(r+c,c) 

 

  

This operation represents known sums-of-products of binomialcoefficients, for instance, expressing the 
diagonal of the result: 

(2.1.14.)  Σc=0..r bi(r,c)2 = bi(2r,r) 
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2.2. Leftmultiplication 

2.2.1. left-multiplication with powerseries  

Applying powerseries as a left-multiplicator introduces the problem of convergence/divergence. In later 
chapters this will be dealt in more detail. 

For s>1 I give some examples for powerseries-summation using 1/s*V(1/s) (one row of the result is one 
example) (proof see "details/leftmultiplication") 

(2.2.2.) lim Σ r=0..oo bi(r,c) / sr+1 = 1/(s-1)c+1  

(2.2.3.) limrows->oo ( 1/s*V(1/s) ~ * P)=1/(s-1) V(1/(s-1))~  

 

  

 

 

Since powers of P can be written as Hadamard-products with geometric-series-coefficients, the effect of 
powers of P can again nicely be derived for iterated multiplication (and even fractional or complex po-
wers) by applying the appropriate powerseries-vector V() as new coefficients. 

If two parameters s and t are chosen to give convergent result then 

(2.2.4.) limrows->oo ( 1/s*V(1/s) ~ * P1/t)   = t/(s*t-1)*V(t/(s*t-1))~  
(2.2.5.) limrows->oo ( 1/s*V(1/s) ~ * Pt)   = 1/(s-t)*V(1/(s-t))~  

Example: 

 

 

  

 

If s=t+1 (or s-t=1) in (2.2.5) then the resulting vector is always the unit-vector V(1)~ , which will be of 
relevance in the summation article. 

The entries of the result can be found by computing the derivatives, see "details 
/proofs/leftmultiplication". 
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2.2.6. Toeplitz shaped coefficients version ; left-multiplication with powerseries 

Assume that the binomial-matrix Pb has also additional coefficients b0,b1,b2,..., though in the triangular 
shifted version as it is in the Toeplitz-manner Toeplitz(B), see the following picture. (This case shall 
occur at different chapters of these articles. The simple case is then, if all b0,b1,b2,..., equal 1 and Pb 
equals the ordinary Pascalmatrix): 

Example: 

(2.2.7.) V(x)~ * Pb  = Y~ 

 

*  

 * =  

The sum of each yc in column c: 

(2.2.8.)  ∑∑
=

−
=

− −
=








=

oo

k

k
ck

oo

k

k
ckc x

)!ck(

!k
b

!c
x

c

k
by

00

1
 

Define first the function based on the multiplication with the first column (c=0): 

  ∑
=

==
oo

k

k
kxb)x(f:f

0

 

Then the binomial-cofactors describe derivatives of f(x). The row-shifting must be compensated by mul-
tiplying of appropriate powers of x, so that we get: 

(2.2.9.)  ,...])"fx(
!

x
,)'xf(

!

x
,f[,...]y,y,y[ 2

2

210
11

=  

The expansion of derivatives in this expressions involves again the binomial-coefficients, thus the ma-
trix P again. Provided that the sums f(x) are convergent for the desired x, then, in matrix-notation the 
result for Y~ is: 

(2.2.10.) Y~  = V(x)~ * Pb  
  = V(x)~ * d[ f/0!,   f'/1!,   f"/2!,   f'''/3!,...] * P ~ *  dV(x))    

 

 

 

2.2.11. left-multiplication with harmonic/zeta-series  

 

The left-multiplication with the harmonic series Z(1)~ involves zeta(1) in column 1 of the multiplication 
and a value would not be assignable. From known results of divergent summation values for the ma-
trixmultiplication Z(s)~ *P can be assigned, even if the exponent in the zeta-seriesvector is not "nice", 
although it involves a bit more effort. 

Zeta-series with higher exponents can conventionally be used as left-multiplicators; in the first column 
of the result we have then the ordinary zeta-values. 
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2.3. Relation to other matrices 

2.3.1. Triangular unit matrix 

In connection with DR, the triangular unit matrix, P can be shifted. Also has the inverse of DR entries 
of P.  

Examples: 

DR * P DR-1 * P DR-3 

   

 

The k-shifted versions multiplied together form in the limit the Stirling-matrices St1 and St2 , so the Stir-
ling numbers can be completely definded by multiplication of binomial-coefficients. 

 

2.3.2. Vandermonde-matrix and Stirling matrix 

The binomial-matrix has an intimate relation to the Vandermonde matrix ZV (due to the implementa-
tion of the binomial-theorem. Together with the matrix St2 of Stirlingnumbers 2'nd kind and a diagonal 
factorial matrix it can be seen as LU-component of ZV: 

 P*dF * St2~ = ZV 

Based on this relation an approach to compute the inverse of the Vandermonde-matrix (which unfortu-
nately is varying with the size of finite dimension) is shown, which uses the easily computable inverses 
of P and St2:  

 ZV-1 = St2
-1 ~ *dF-1 * P-1  

This is discussed in more details in Inverse Vandermonde matrix.  

 

2.3.3. (Divergent) Euler-summation of any order 

The method of Euler to sum divergent series is based on properties of the binomial-matrix and its spe-
cific operation on powerseries. Higher orders of the Euler-summation method can easily be described 
when the Pascal-matrix is introduced as an operator, which is allowed to get higher integer powers, to 
best fit the summing needs for divergent series of equivalent high orders. Since the binomial-matrix can 
also take fractional and even complex-powers, the Euler-summation can then be applied using the best 
fractional or even of complex order. 

This is discussed in the Summation-article. 
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3. Proofs and details 

3.1. Integer and complex powers as powerseries-operation 

Theorem: 

(3.1.1.)  P s = dV(s) * P * dV(1/s)  = P ☼ Toeplitz(s) 

(3.1.2.) P s := P sr,c = binomial(r,c)*sr-c  // = 0 if c>r 

Proof : 

According to the binomial-theorem it is 

(3.1.3.) P * V(1) = V(2) 
(3.1.4.) P * V(2) = P*P * V(1) = P2 * V(1) 
 
and in the iteration 
 
(3.1.5.) Pn * V(1) = V(n+1) 

The entries in each row of Pn need to be such, that the binomial-transformation of V(1) to V(n+1) oc-
curs. 

The binomial-theorem for the last transformation reads for a single row r: 

(3.1.6.) (n+1)r = nr (bi(r,0)*1 + nr-1 bi(r,1)*1 + nr-2 bi(r,2)*1  + ... n bi(r,r-1)*1 + bi(r,r)*1  

This can be rewritten 

(3.1.7.)  nr*(1+1/n)r = nr ( (bi(r,0)* n0 + bi(r,1)*  n-1 + bi(r,2)*n -2  + ...+ bi(r,r-1)*n r-1 + bi(r,r)*n -r ) 

whose single terms are the coefficients of a row of a matrix, which performs the binomial-transform of 
V(1) to V(n+1). Each of these rows has a row-scaling factor nr according to the row-index r, which 
agrees to a premultiplication with a diagonalmatrix dV(n) containing nr in the r'th row. 

Also it has a column-specific coefficent n-c which agrees with a postmultipliciation of the vector of the 
binomial-coefficients for this row with a diagonal-matrix dV(1/n) containing n-c in its c'th column. The 
latter is the same for each row r and thus independent of the row-index r. 

Thus (2.1.7) , written for each row as a complete matrix, where the summands form the coefficients, is 
nothing else than 

 dV(n) * P * dV(1/n) 

and if the summation of each row (by postmultiplication with the summing-vector V(1)) 

 dV(n) * P * dV(1/n) * V(1) =  V(n+1) 

and at the same time it is from (2.1.5) 

 Pn * V(1) =  V(n+1) 

then also 

(3.1.8.) dV(n) * P * dV(1/n)  =  Pn  

and this is also the Hadamard-product of P with the Toeplitz-matrix T(n) = V(n) * V(1/n)~   

(3.1.9.)  Pn = dV(n) * P * dV(1/n)  = P ☼ Toeplitz(n) 

Since the binomial-theorem does not only provide the terms of (n+1)r  for integer n but for all complex 
s, (2.1.7) is valid for all complex parameters s, with the trivial exception of s=0: 

(3.1.10.)  P s = dV(s) * P * dV(1/s)  = P ☼ Toeplitz(s) 

(3.1.11.) P s := P sr,c = binomial(r,c)*sr-c  // = 0 if c>r 

and the theorem is proved. 
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3.2. The matrix-exponential 

Theorem:  

P is the matrix-exponential of a matrix L, whose entries are the sequence 
of natural numbers in the first principal subdiagonal 

 P = exp(L) 

where 

 L =subdiag(1)([1,2,3,4,...]) 

 

L =  

 

Proof: 

A formal proof you may find in [matexp]. For the current case it may be instructive to see a heuristic. 

The series-expansion for the (scalar) exponential power-series is valid also for matrices. With a loga-
rithm-matrix L this reads then as: 

(3.2.1.) exp(L) = L0/0! + L1 /1!  + L2 / 2! + L3 / 3! + ... 

The assumption is, that L is the subdiagonal-matrix containing the sequence of natural numbers in the 
first principal subdiagonal. 

For a matrix L with arbitrary coefficients a,b,c,d,... in that subdiagonal the powerseries looks like 

L0/0!= L1/1!= L2/2!= L3/3!= L4/4!= 

 

0! 

 

1! 

 

2! 

 

3! 

 

4! 

In each of the occuring subdiagonals the entries are products of neighboured entries of the original ma-
trix L. 

The sequence of terms of this series is finite for finite dimension d of the logarithm-matrix, since a sub-
diagonal-matrix (which is L) is nilpotent to the exponent d. 

(3.2.2.)  The sum is  

 

 

If a=1, b=2,c=3,...and the factorials are replaced 
by this it is symbolically 

 

 

and in numbers 

 

 

rewritten 
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 or  

 

which comes out to reflect the definition of binomials. 

(End of Proof) 

 

3.3. Complex powers of P 

Theorem: 

(3.3.1.)  P s = dV(s) * P * dV(1/s)  = P ☼ Toeplitz(s) 

(3.3.2.) P s := P sr,c = binomial(r,c)*sr-c  // = 0 if c>r 

Proof : 

A power of an exponential is a multiple of the logarithm.  

So if we use the logarithm L and multiply it by an arbitrary com-
plex scalar factor s we have initially 

 

and each r'th power of this introduces the r'th power of s in the r'th subdiagonal 

The matrix exponential is then 

(3.3.3.) Ps  = P ☼ Toeplitz(s) 
  = V(s)~ * P * V(s)-1   

 

which is a Hadamardproduct of P with the triangular Toeplitzmatrix T(s)  

(3.3.4.) Ps := Ps
r,c = binomial(r,c)*sr-c  // = 0 if c>r 

(End of proof) 

 

3.4. Leftmultiplication with powerseries 

For the leftmultiplication with a powerseries V(x)~  the fact can be used, that the multiplication with a 
column c of P is just the derivative multiplied by x.  

With a rowvector V(x) the entries of the result Y in 

(3.4.1.) V(x)~ * P = Y~  

can be described using a function  

(3.4.2.) f(x) :=  Σ r=0..oo  bi(r,c) * xr  

Then 

 y0 =   f(x)           =  (1 +  x + x2 +   x3+ ...) 
 y1 =   f'(x) * x         =         (1 + 2x + 3x2 + ...) x 
 y2 =   f"(x) * x2/2!   =                (2  + 6x + 12x2 + ...) x2 /2!  
 ... 
(3.4.3.) yc =  f(c)(x) * xc/c!  =   ( c! + ... ) xc /c! 
 ... 
(3.4.4.) Y~ = [ f(x)/0! ,  f'(x) x/1! , f"(x)  x2/2! , .... ] 
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Inserting the values for the derivatives gives 

 Y~ =             [1/(1-x),   1/(1-x)2 x/1! , 2!/(1-x)3 x2/2!, ... , c!/(1-x)c+1 xc/c!, ...   ] 
      = 1/(1-x) [1,            x/(1-x),           (x/(1-x))2 ,         ... , (x/(1-x))c,          ...   ] 
(3.4.5.)      = 1/(1-x) * V(x/(1-x)) ~  

and using z = x/(1-x) : 

 V(x)~    * P =  1/(1-x) * V(x/(1-x)) ~  
(3.4.6.) x V(x)~ * P = z * V(z) ~  

To keep this sums convergent abs(x) must be limited to abs(x)<1. The divergent summability for x<= -1 
can be shown by Euler-summation (see chapter summation) using this toolbox of matrices only; the 
complete analytic continuation for any complex x<>1 cannot be adressed here. 

Using integer powers of P means iteration: 

 x V(x)~ * P * P = z * V(z) ~ * P = z/(1-z) * V(z/(1-z)) ~  = x/(1-2x) V(x/(1-2x)) 
(3.4.7.) x V(x)~ * Pn =  x/(1-nx) V( x/(1 - nx)) 
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4. Loose ends 

4.1. Variations using the matrix-logarithm 

4.1.1. a column-shift: finding a cyclotomic expression 

 

using exp(L+1) means shifting of P  

L =Sd(1,Z(-1)+1) 

 

Pc = exp(L) 

 

 

and provides values of the related cyclotomic polynomial for any power n>0  

(4.1.1.1.)   Pc* V(x-1) =(x* V(x) - 1*V(1) )/ (x-1) 
 
(4.1.1.2.)   entry in row r := (x r+1 - 1)/(x - 1) 

*  or *   

  =  or=   
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