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A generalized Bernoulli-recursion/-identity 

 

Abstract: Another recursion for the definition of Bernoulli-numbers is given. 
Different from the most common recursion-formula (see [mathworld], for 
instance) this formula allows to be parametrized. So a whole family of re-
lated number-sequences can be defined by this recursion.  

Amazingly, these are some of the most basic sequences, like Bernoulli-
numbers, "η"-numbers, reciprocal of natural numbers, the coefficients of 
the geometric series with q=1/2 and even of the constant series with 
a(n)=1/2. I end this article with some easy, but amazing identities for infi-
nite weighted sums of Bernoulli-numbers, which I haven't seen yet (most 
are divergent but can classically be summed using divergent summing pro-
cedures) 

 

(Foreword in first version:) "After writing  this article, I found a remark 
about the identity, which I describe here, in  [ZWSUN]. Zhi Wei Sun men-
tions: "in a book of von Ettinghausen published in 1827 the author ob-

tained, that we can compute B_2n..." ... just in this way and ..."with the help 

of continued fractions, in 1995 M. Kaneko [] rediscovered this...".  

But the approach here might focus still another type of generality, which I 
didn't see before. So I'll present the text here anyway; if I find some related 
material, I'll insert references." 

Gottfried Helms  (Vers. 07. Mai. 07) 
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1. A generalized Bernoulli-identity 

1.1. Intro 

The following result should be seen in contrast to the known recursive definitions for 

Bernoulli-numbers bk: (I'll use b1 = + ½ all over the following text). 

Common recursive-definition: 

(1.1.1.)  1 = b0  
 and then by recursion: 
          n-1 
   0 =    ∑ ( (-1)k * binomial(n,k)* bk   )      // for n ≥ 2 
          k=0 

 

Examples:  or 

(1.1.2.) 
        1 = 1 b0  
        0 = 1 b0   -  2 b1  
        0 = 1 b0   -  3 b1  +  3 b2  
        0 = 1 b0   -  4 b1  +  6 b2  -  4 b3  
     ... 

 

         1  = 1 b0  
        b1 = 1 b0   -  1 b1 
        b2 = 1 b0   -  2 b1  +  1 b2 
        b3 = 1 b0   -  3 b1  +  3 b2  -  1 b3 
        b4 = 1 b0   -  4 b1  +  6 b2  -  4 b3  +  1 b4 
     ... 

 

 

which adresses the leading section of the first Bernoulli-numbers b0 .. bn-1  

 

1.2. A generalized recursion formula 

I just found another recursion formula, which adresses sections of Bernoulli-numbers 

of indexes  n .. 2n.  

(1.2.1.) 
         2 n 
   0 =  ∑  (-1)k binomial( n , k - n ) * b k-1 * k  
        k=n 

 

Examples: 

(1.2.2.) 

        0 = 1 b0 *1  -  1 b1*2 
        0 = 1 b1 *2  -  2 b2*3 +   1 b3*4 
        0 = 1 b2 *3  -  3 b3*4 +   3 b4*5 -   1 b5*6 
        0 = 1 b3 *4  -  4 b4*5 +   6 b5*6     4 b6*7 + 1*b7*8 
        0 = 1 b4 *5  -  5 b5*6 + 10 b6*7 - 10 b7*8 + 5*b8*9 + 1*b9*10 
     .... 

 

 

This formula has also relevance in a more general context: not only the sequence of 

Bernoulli-numbers obeys this relations, but also some meaningful other sequences. 

The interesting aspect is, that these are all very basic number-theoretic-sequences.  
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The following example-sequences satisfy the above system of equations; from the 

problem it will become clear, that there are even infinitely many different sequences 

possible.  

Notational remark: To distuingish the general case from the specific case of Bernoulli-

numbers I use the letter ß for the general case and b for the Bernoulli-numbers: 

 

Sequences as possible solutions of the eigenvector-problem for PJ  

(1.2.3.) 

 ß0     ß1     ß2     ß3      ß4   ..... 
------------------------------------------ 
  1    1/2    0   - 1/4       0    ...  // multiples of Eta-function at negative or 0 exponent
  1    1/2   1/6     0      -1/30  ...  // Bernoulli-numbers 
  1    1/2   1/4    1/8      1/16  ...  // geometric series 
  1    1/2   1/3    1/4      1/5   ..  // harmonic series 
  1    1/2   1/2    1/2      1/2   ..  // constant series 
binomial-series require scaling of ß0: 
  2     1     1      1        1    ..  // binomial(r,0) series = 2* constant series 
  1    1/2   1/3    1/4      1/5   ..  // binomial(r,1) series = harmonic-series 
 1/3   1/6   1/10   1/15    1/21   ... // binomial(r,2) series  
 1/10  1/20  1/35   1/56    1/84       // binomial(r,3) series  
(and it seems as all binomial-series starting at the appropriate index fit this scheme) 
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1.3. Matrix-formulae: notation 

To explain the "generalism" of this scheme, the reader has to be introduced into the 

concept of eigenvectors of the signed Binomial/"Pascal"-matrix PJ.(For details of this 
see my projectindex in the reference section) 

The used matrix-toolbox contains the following vectors and matrices, with the follow-

ing conventions:  

* vectors are primarily assumed as column-vectors  

* the transpose-symbol "~" is used (as in the openly available number-theoretic 

computerprogram Pari/GP) . 

* the indices r,c for rows and columns are always assumed as beginning at zero 

* the superscript prefix d is added, if a vector is used as a diagonal matrix 

* matrices are generally assumed as lower triangular matrices. 

 

Basic vectors are 

 Vandermonde vector of consecutive powers of a general parameter x 
  V(x) = [ 1 , x , x2 , x3 ,...] ~  
  dV(x)   ist use as diagonal-matrix 
 a vector containing the s'th powers of reciprocals of natural numbers;  
   helps to work with Dirichlet/Zeta-series: 
  Z(s) = [ 1, 1/2s , 1/3s , 1/4s ,...] ~ 
  dZ(s)   ist use as diagonal-matrix 
 vector of factorials and reciprocals of factorials 
  F =diag(  0! , 1! , 2! , 3! , 4! ,...)   
  f = diag(  1 , 1 , 1/2! , 1/3! ,  1/4! ,...)   
 vector of Bernoulli-numbers 
  B = [b0 , b1, b2,...]   where bk are the k'th bernoulli- 
     numbers, and b1 = +1/2 

 

I also use for convenience J and I for the vectors resp diagonalmatrices 

 Identity-matrix    I = dV(1) = diag(1,1,1,1,...) 
 alternating identity  J = dV(-1) = diag(1,-1,1,-1,...) 

The binomial-matrix: 

 P: the matrix of binomial-coefficients 

 

 

 PJ = P * J 

the binomial-matrix having columns 
with alternating signs 
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Eigenvector-relations: 

 V(½) B Z(1) 

(1.3.1.) 

PJ * V(½) = V(½) * 1 
  saying V(½) is an eigenvector of PJ 

Pj * B = B * 1  
Pj * Z(1) = Z(1) * 1  
 *    *    *    

 =   * 1 =     * 1 =    * 1 

 

Many of the special properties of the Bernoulli-numbers can be related to the prop-

erty of being an eigenvector of the binomial-matrix. All the above mentioned se-

quences are eigenvectors of PJ, and thus a generalized approach to unify these se-

quences in a common generation scheme is at hand. 
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1.4. Eigenvector-approach for finding the formula 

To solve an eigenvector problem using the eigenvalue 1 requires solving the matrix-

equation: 

 P *X = X * λ  // where λ is an eigenvalue 
 P *X - λ X  = 0 
 (P – λI) X  = 0 

(1.4.1.) (PJ  -  1*I )* X  = 0 
  (use eigenvalue λ= 1) 

*    

 =    

 

This can be done by rowwise gaussian elimination. One gets: 

(1.4.2.) 
 G3 :=    Gaussian row-elimination on (PJ - I ) 

*    

 =    

 

One special property of the binomialmatrix is, that now each second row is zero due 

to linear dependencies of rows, which occurs regularly in the process of elimination. 

 

 

 

A rescaling of rows and columns of G3 exhibits then a straightforward pattern of coef-

ficients; the X-vector must be rescaled accordingly and is rewritten here as Y: 

(1.4.3.) 
 G2 * Y  =     dZ(-1) * G3 * dZ(1) * dZ(-1) * X 
  =   [dZ(-1) * G3 * dZ(1)]  *    [dZ(-1) * X] 
  =                 G2                *           Y  
  = 0 *    

 =    
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which again can be improved by rescaling with the factor 1/2 (this row rescaling is 

irrelevant for the solution in Y and thus also irrelevant in X ): 

(1.4.4.) 
 G1 * Y = 1/2 * G2 * Y = 0 

*    

 =    

 

Discarding the empty rows gives the final formula: 

(1.4.5.) 
 G * Y = 0 

*    

 =    

 

To find an eigenvector of PJ one has to solve G * Y = 0  for Y and then to rescale  

(1.4.6.) X = dZ(1) * Y,  

to obtain  

 X = [ x0 , x1 , x2 , x3 , ...] ~  

as one possible eigenvector. 

- This can be done by recursion, assuming x0=1 and is expressed by formula (1.2.1).  

- Another approach can be developed when noticing that of each pair of consecutive 

x2k , x2k+1 one can be freely assumed and the other can then be determined. We can 

separate G into two partial matrices G1,G2 by selecting each second column and solve 

for one half set of coefficients by applying values to the other half set. See section 2.5 

for details. 
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1.5. One degree of freedom for a pair of selection 

The specific property of the binomial-matrix PJ is, that on each row we have two new 

coefficients, which allows one degree of freedom for the choice of one value, the ratio 

or the pair cosine/sine (defining for instance the slope of a vector) of an angle-

parameter phi. (The length of this vector is determined by the previous result of the 

recursion). 

The formula is then, again using ß for a general solution: 

(1.5.1.) 
        0 = 1 ß0*1 - 1 ß1*2 
        0 =                1 ß1*2 - 2 ß2*3 +  1 ß3*4 
        0 =                               1 ß2*3  -   3 ß3*4 +  3 ß4*5  -   1 ß5*6 
        0 =                                                1 ß3*4  -   4 ß4*5 +  6 ß5*6  -    4 ß6*7 +   1 ß7*8 
        0 =                                                                  1 ß4*5  -  5 ß5*6  + 10 ß6*7  - 10  ß7*8  + 5 ß8*9 - 1 ß9*10 
        0 = ... 

Here ß0 is free, but the relation with ß1 is fixed. We set for all solutions ß0 = b0 = 1 and 

thus ß1 = b1 = + ½ .   

 

To display the cosine/sine-appeal more visible this can be rewritten with the pairs of 

  

coefficients ( ck , sk ) :  

(1.5.2.) 

       0 = 1 c0*1 - 1 s0*2 
       0 =               1 s0*2 - 2 c1*3 +  1 s1*4 
       0 =                             1 c1*3  -  3 s1*4 +  3 c2*5  -   1 s2*6 
       0 =                                              1 s1*4   -  4 c2*5 +  6 s2*6  -    4 c3*7 +  1 s3*8 
       0 =                                                               1 c2*5  -   5 s2*6 + 10 c3*7  - 10 s3*8 + 5 c4*9 - 1 s4*10 
 

If I insert in a recursive computation values for (ck , sk ) I can freely choose either   

 

*  one of the two required values or   

 

*  their ratio / the angle.   

 

Recall the list of possible eigenvectors : 

 

 ß0     ß1     ß2     ß3      ß4   ..... 
------------------------------------------ 
  1    1/2    0   - 1/4       0    ...  // multiples of Eta-function at negative or 0 exponent 
  1    1/2   1/6     0      -1/30  ...  // Bernoulli-numbers 
  1    1/2   1/4    1/8      1/16  ...  // geometric series 
  1    1/2   1/3    1/4      1/5   ..  // harmonic series 
  1    1/2   1/2    1/2      1/2   ..  // constant series  
binomial-series require scaling of ß0: 
  2     1     1      1        1    ..  // binomial(r,0) series = 2* constant series 
  1    1/2   1/3    1/4      1/5   ..  // binomial(r,1) series = harmonic-series 
 1/3   1/6   1/10   1/15    1/21   ... // binomial(r,2) series  
 1/10  1/20  1/35   1/56    1/84       // binomial(r,3) series  
(and it seems as all binomial-series starting at the appropriate index fit this scheme) 
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This gives  

* the Bernoulli-numbers, when setting sk = 0 for all k>0 ; this means I choose the 

angle 0° for all pairs,  

* multiple of eta-function (=2*η(-k)) when all ck = 0; this means I choose 90° = pi/2 

for all pairs.  

* If I set the multiples of 2 from s1 for all sk I get the harmonic series, (ratios 
1/2,3/4,5/6,...) 

* if I set all powers of 4 for ck I get the geometric series;  (ratios all 1/2) 

* and even I can set all sk,ck = ½   for  k>0. (ratios all 1) 

* and the reciprocals of all binomial-series seem to fit, if started at an appropri-

ate index (ratios for binomial(k,2) = 2/4, 4/6, 6/8,...for binomial(k,3) = 3/6, 5/8, 

7/10,...) 

 

This is the meaning of the "generalized Bernoulli-recursion" and it exhibits a very spe-

cial relation between these sets of basic number-theoretical numbers: 

For any eigenvector of PJ (including the vector of Bernoulli-numbers) the 
recursive identity holds: 

(1.5.3.) 
 ß0 = 1 
 Recursion: 
           2 n 
   0 =  ∑  (-1)k binomial( n , k - n ) * ß k-1 * k  
           k=n 

where the whole set of ß's may be scaled by one appropriate multiple to adapt to the above indi-
cated sets. 
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2. Some interesting consequences 

2.1. Some courious identities for infinite sums involving sets of coefficients 

One can find some new(?) identities based on this system of equations. Here I replace, 

for readers convenience the coefficients (ck , sk ) which are constantly scaled by their 

index by (Ck,Sk) and determine the column-sums: 

(2.1.1.) 

         0 = 1 C0   - 1 S0 
         0 =              1 S0  - 2 C1 +  1 S1 
         0 =                          1 C1  - 3 S1 + 3 C2   -  1 S2 
         0 =                                      1 S1  - 4 C2  +  6 S2   -    4 C3 +    1 S3 
         0 =                                                  1 C2   -  5 S2  + 10 C3  -  10 S3   + 5 C4   -  1 S4 
              ... 
 Sums  = --------------------------------------------------------------------------------------------------- 
         0 =  1 C0 + 0 S0  -1 C1  -  1 S1  + 0 C2  +  1 S2  +   1 C3   +   0 S3    -  1 C4     -1 S4 ...// generally 
 
         0 =  1 b0 *1        -1 b2*3                ...                  +  1 b6*7                  -1 b8*9      ....     // bernoulli 
 

then all possible solutions for eigenvectors -as far as convergence is given - should 

satisfy the identity, which is composed from the column-sums: 

 

(2.1.2.) 

           oo         2                  π      2 k - 1 
  0  =  ∑     ---------  cos (-- *   -------- ) * ßk *(k+1)          //ß1 = +½ 
          k=0    sqrt(3)           2          3 
 

 

where the constant term 2/sqrt(3) may be omitted, and is here introduced only to get 

the cos()-coefficients scaled to (1,0,-1).1  

 

If the coefficients ßk contain the Bernoulli-numbers bk, this formula can be remarkably 

simplified, since all b2k+1 =sk+1=0  (for k>0) and also each third of the remaining terms is 

zeroed by the vanishing column-sum: 

(2.1.3.) 
           oo 
  0  =  Σ     (   b6 k  * (6 k+1)  - b6 k+2*(6 k+3)  ) 
           k=0 
 

However, note, that in the case of Bernoulli-numbers (as well as with the η(-n)-values) 

this sum is strongly divergent and requires for instance Borel-summation to get a 

value assigned to. The same technique is required in the next example. 

 

                                                 
1
 I don't have a proof, that indeed the column-sums have only (1,0,-1) as cofactors and in the sug-

gested periodicity. However in OEIS, Paul Barry [see: A010892] mentions just this (1,0,-1)-identity 

of the binomial-coefficients, as they occur in the column-sums , as well as the Fibonacci-sum 

assumption in the next example. 
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* A second courious identity: 

Switching signs in each second row this can also be related to the Fibonacci-numbers: 

(2.1.4.) 

         0 = 1 C0   - 1 S0 
         0 =           -  1 S0  + 2 C1 -  1 S1 
         0 =                           1 C1 -  3 S1 + 3 C2   -  1 S2 
         0 =                                    -  1 S1 + 4 C2   -  6 S2   +  4 C3  -    1 S3 
         0 =                                                   1 C2   -  5 S2   +10 C3  -  10 S3   + 5 C4   -  1 S4 
              ... 
 Sums  = --------------------------------------------------------------------------------------------------- 
         0 =  1 C0  - 2 S0   +3 C1  -  5 S1 + 8 C2  - 13 S2 +  21 C3  - 34 S3   +55 C4  - 89 S4 ...// generally 
 
         0 =  1 b0 *1 –2b1*2 +3 b2*3   + 8 b4*5           +  21 b6*7              +55 b8*9      ....     // bernoulli 
 

then all possible solutions for eigenvectors - as far as convergence is given - shall sat-

isfy the following identity over column-sums, which involves the Fibonacci-numbers 

Fibk:2 

 

(2.1.5.) 

           oo      
  0  =  ∑ (-1)k   Fibk+1  * ßk *(k+1)          // ß1 = +½ 
          k=0   
 

 

Again, if the coefficients ßk contain the Bernoulli-numbers bk , the formula reduces to 

the zero-sum 

(2.1.6.) 
                         oo 
  0  =  – 4b1 + ∑   (   Fib2 k+1 b2 k  * (2 k+1)  ) 
                        k=0  

which however again needs techniques of divergent summation, to arrive at this 

value. 

 

                                                 
2
  (see [A010892] again) 
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* Convergent examples of identities 

The above formulae do not converge for all eigenvectors, for instance when using Ber-

noulli-numbers. The weirdest problem is here, that finite approximations discard 

increasing numbers of terms with an overall growing weight. 

However, to get an impression of the validity of these formulae one can adapt them to 

get convergent series. For brevity I express this in terms of matrix-multiplications. 

The above formula says: 

  V(1)~ * G*  dZ(-1) * X = 0  

where X is one of the inserted eigenvectors, here we consider the vector B of Ber-

noulli-numbers. 

To have a convergent example one could row-scale the matrix G, to get compositions 

of decreasing weight for higher indexes, for instance by inverse-factorial (dF-1) weight-

ing of rows of G: 

  V(1)~ * dF-1* G*  dZ(-1) * B = 0  
                  T~                     * B = 0 

 

 

This gives for T the vector 

  T = [  1,  0,  -3/2,  -1/3,  7/8,  3/10,  -43/144,  -113/840 ,... ]~ 

with still diverging terms of T~ * dB :  

T~ * dB = [1, 0, -0.25, 0, -0.029167,  0,   -0.0071,... 0.08698, 0, 0.1916, 0,  0.4367,  
0,  1.0280, 0, 2.4947, 0, 6.2291, 0, 15.968, 0,... <diverging>] 

and the partial sums are also diverging - the factorial scaling alone does not suffice. 

 

A bit sharper (possibly the weakest sufficient) rowscaling seems to be: 

  T~  = V(1/2)~*dF-1* G * dZ(-1) 
   = [  1,  -1,  -21/8,  7/12,   565/384,  -49/640, ...] 

The limit of zero is again expected by formula 

  lim  Σn->oo  Tn * bn = 0 

  ...b
1146880

85217
b

46080

18977
b

384

565
b

8

21
b*1b*10 864210 +−+−−=  

 explicitely 

  ...
276480

2711

2304

113

16

7

2

1
10 −−−−=  

The partial sums (by Euler-summation) are then (rounded to 4 decimals) 

  Sn = [0.5,   0.625,  0.5703, 0.4570,  0.3422,  0.2466,  0.1739,  0.1212, .... ] 

with the (assumed) limit: 

  lim Sn->oo = 0 . 
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A sharper (and definitely sufficient) scaling uses the squares of the inverse factorials: 

  T~  = V(1)~*dF-2* G * dZ(-1) 
   = [  1  0  -21/4  10/9  205/64  -331/600 ...] 

and then the limit of zero is expected by the formula: 

  lim  Σn->oo  Tn * bn = 0 

  ...b
1032192

68111
b

103680

68341
b

64

205
b

4

21
b*10 86420 +−+−=  

 explicitely 

  ...
30965760

68111

622080

9763

384

41

8

7
10 −−−−=  

The partial sums are then  

  Sn = [1, 0.125, 0.0182292, 0.002535,  ...]  

with the now much more suggestive approximation to the expected limit  

  lim Sn->oo = 0 . 

 

 

 

 

 

 

* A general remark on constructing identities: 

The occurence of four such zero-sum-identities suggest another generalization. 

The least we can say is, that we can construct  

* infinitely many 

* and nearly arbitrary 

such identities just by composition of sums/differences of rows. Moreover, if the di-

vergent summation-method, which can be applied, is regular, we can add many more 

other compositions to eventually arrive at values different from the zero-sum. 

The set of possible selections however may be principally limited in that not all com-

binations of, say the Bernoulli-number multiples, can be constructed this way to get 

the weighted sum equal zero. I didn't look deeply in this question, so I'll leave it with 

this remark. 
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2.2. H = G-1; the reciprocal of G 

It is possible to describe a reciprocal of G. Computing stepwise the inverses of the fi-

nite top-left submatrices of G gives the following matrix H. 

(2.2.1.)  H = G-1  

 Example 

 H = G-1 =  

The rows of H are described in OEIS in various entries; row 0 is known as "Catalan-

numbers" and the subsequent rows r seem most consistently be described as "r'th 

convolution" of that row. http://www.research.att.com/~njas/sequences/A033184 with the 

description of entries in row n,column m: 

  a(n,m) = (m+1)*binomial( 2*n - m , n - m) / (n+1)   

 

The (divergent) sums of the first top rows, approximated by Euler-summation give 

     0.6180339887493705 

    -0.3819660112452572 

     0.2360679774723745 

    -0.1458980336327082 

    0.09016994333424594 

   -0.05572808874184361 

    0.03444185038347767 

   -0.02128622818153165 

    0.01315559990577021 

  -0.008130583574793153 

 

which seems to be the powerseries of the golden ratio φ=(sqrt(5)-1)/2 and the resulting 

vector of rowsums is then (proposed): 

 

(2.2.2.)  (J*H) * E =  φ *V(φ)    (Euler-summation) 

   ∑
=

+=−
oo

0c

r1

c,r

r H)1( ϕ   for a fixed row r 

 

Generalized one finds (empirically) for an arbitrary a as rowsum in row r of H  

define  y = x/4,   z=½*((x+1)½ - 1) 

(2.2.3.)  (J * H) * y V(y) =  z V(z) 
 

   ∑
=

++ −+=−
oo

0c

r1

c,r

r1r ))11x(
2

1
(H)

4

x
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2.3. H and G as eigenmatrix of a known Riordan array 

G and G-1 (= H) form an eigensystem of another known matrix (where the columns are 

scaled by the column-number to get integer entries): 

 Y = G * dZ(1)*   G-1      * dZ(-1) Y = 

  

 

The matrix is known to OEIS, see: [A106268] 

 

 

2.4. Using G again: binomial sums of the golden ratio 

One more identity can be derived, given that proposition (2.2.3) holds. Leftmultiply the 

equation with (J*H)-1 (= G*J) then we have a summing identity involving binomial-

coefficients and powers of the golden ratio: 

 

(2.4.1.) G *J *  φ *V(φ)  = E 

(2.4.2.) 1*
c

1r
or1*)1(*G

1r

0c

c1r
oo

0c

c1c

c,r =






 +
=− ∑∑

+

=

+

=

+ ϕϕϕ  

 

which can be generalized to the following simple equation (in the conventional nota-

tion for a fixed row r in G): 

define  y = x½ / 2 

(2.4.3.) G*J*  (y - ½) V(y - ½) = (y² - ¼) V(y² - ¼) 
 

  1r2
1r

0c

c1r )
4

1
y()

2

1
y(

c

1r
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2

1
y( +

+

=

+ −=−






 +
− ∑  

 and obviously agrees with the common binomial-transform. 

 

Proof:  

(2.4.4.) for a fixed row r: 
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2.5. An alternative for choosing a set of solving coefficients 

The structure of the matrix G allows to separate it into two partial matrices G1 and G2 

using each second column only for each.  

 

  

 

According to this we must also define the partial vectors Y1 and Y2 from each second 

entry in Y.  

 

Y1= 

 

Y2= 

 

 

In terms of a matrix equation we can rewrite this thus 

 G * Y = 0  
 G1 * Y1 + G2*Y2 = 0 
 G1 * Y1 = - G2*Y2  
 Y1 = - G1

-1 G2*Y2  

 and determine the first half-set of coefficients in Y1 by freely choosing the sec-

ond half-set of coefficients in Y2  - or vice versa. (When playing with this in software, 

the number of rows of G1 and G2 need be adapted to become invertible) 

Here we compute Gx = G1 -1 * G2 first and see immediately ...  

 

 

 

= - 

 

* 

 

  that if we insert [1,0,0,...] into [y1,y3,y5,...] that for [y0,y2,y4,...] we get [1, -1/2 , 

1/6, -1/6, 3/10, ...] which is just the (negated) first column of GX.  

This means then for [b0, b2, b4, b6, ...] that we get [1 ,  -1/2/3 , 1/6/5 , -1/6/7,  3/10/9 , ...] = [1 ,  

-1/6 , 1/30 , -1/42,  1/30 , ...]  which are − as expected − the bernoullinumbers. 

 

For further discussion the following Eigendecomposition Gx=M*D*W where W=M-1 might be of interest: 

 

   
See OEIS for M http://oeis.org/A036969 "triangle central factorial numbers T(2n,2k) (in Riordan's nota-
tion)" and "Can be used to calculate the Bernoulli numbers via the formula B_2n = ..."  and "Generalized 
Stirling numbers of the second kind...". For W see http://oeis.org/A204579  
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3. References 

[ZWSUN]  Zhi Wei Sun : SOME CURIOUS RESULTS ON BERNOULLI AND EULER POLYNOMIALS 
A talk given at Institut Camille Jordan, Universit´e Claude Bernard Lyon-I (Jan. 13, 
2005), and University of Wisconsin at Madison (April 4, 2006). 
Online at Zhi Wei Sun:    http://pweb.nju.edu.cn/zwsun 

 

About eigenvectors of Pj  (keyphrase in JIS is "invariant sequences under binomial-transformation") see 

also 

[ZHSUN] Sun, Zhi-Hong : Invariant sequences under binomial-transform,   
Fibonacci Quarterly 39, No 4, Pg 324-333  
http://www.hytc.cn/xsjl/szh/iis.pdf 

 

 

 

 

From OEIS-Database: 

[A010892] http://oeis.org/A010892 

A010892 Inverse of 6th cyclotomic polynomial. A period 6 sequence.  
 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1  
COMMENT  Any sequence b(n) satisfying the recurrence b(n)=b(n-1)-b(n-2) can be written as  

          b(n) = b(0) * a(n)  +  (b(1)-b(0)) * a(n-1)  . (...) 
REFERENCES  Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences,  

Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.  
LINKS  Ralph E. Griswold, Shaft Sequences  

Index entries for sequences related to Chebyshev polynomials.  
FORMULA  G.f.: 1/(1-x+x^2); 

a(n)=a(n-1)-a(n-2), a(0)=1, a(1)=1;  
a(n)= S(n, 1) = U(n, 1/2) (Chebyshev U(n, x) polynomials).  
a(n)=sum{k=0..n, C(k, n-k)(-1)^(n-k) }. - Paul Barry (pbarry(AT)wit.ie), Sep 13 2003  
a(n)=sum{k=0..floor(n/2), C(n-k, k)(-1)^k} - Paul Barry (pbarry(AT)wit.ie), Jul 28 2004  

 
[A106268] http://oeis.org/A106268  (for more comments see also http://oeis.org/A001700 

A001700 C(2n+1, n+1): number of ways to put n+1 indistinguishable balls into n+1 distinguishable boxes = 
number of (n+1)-st degree monomials in n+1 variables = number of monotone maps from 1..n+1 
to 1..n+1.  
(Formerly M2848 N1144)  

 
1, 3, 10, 35, 126, 462, 1716, 6435, 24310, 92378, 352716, 1352078, 5200300, 20058300, 

77558760, 300540195, 1166803110, 4537567650, 17672631900, 68923264410, 269128937220, 

1052049481860, 4116715363800, 16123801841550 (list; graph; listen)  

COMMENT  

To show for example that C(2n+1, n+1) is the number of monotone maps from 1..n+1 to 1..n+1, 

notice that we can describe such a map by a nondecreasing sequence of length n+1 with entries 
from 1 to n+1. The number k of increases in this sequence is anywhere from 0 to n. We can 

specify these increases by throwing k balls into n+1 boxes, so the total is Sum_{k=0..n} 

C((n+1)+k-1, k) = C(2n+1, n+1).  
(...) 

 
[A036969] http://oeis.org/A036969 

A036969 Triangle read by rows: T(n,k) = T(n-1,k-1) + k^2*T(n-1,k), 1 < k <= n, T(n,1) = 1 

 1, 1, 1, 1, 5, 1, 1, 21, 14, 1, 1, 85, 147, 30, 1, 1, 341, 1408, 627, 55, 1, (...)  

COMMENT  

Or, triangle central factorial numbers T(2n,2k) (in Riordan's notation). 
Can be used to calculate the Bernoulli numbers via the formula B_2n = (1/2)*Sum{k= 1..n, (-

1)^(k+1)*(k-1)!*k!*T(n,k)/(2*k+1)}. E.g., n = 1: B_2 = (1/2)*1/3 = 1/6. n = 2: B_4 = 

(1/2)*(1/3 - 2/5) = -1/30. n = 3: B_6 = (1/2)*(1/3 - 2*5/5 + 2*6/7) = 1/42. - Philippe Deléham, 
Nov 13 2003 

From Peter Bala, Sep 27 2012: (Start) 

Generalized Stirling numbers of the second kind. T(n,k) is equal to the number of partitions of 
the set {1,1',2,2',...,n,n'} into k disjoint nonempty subsets V1,...,Vk such that, for each 1 <= j <= 

k, if i is the least integer such that either i or i' belongs to Vj then {i,i'} is a subset of Vj. An 

example is given below. 
Thus T(n,k) may be thought of as a two-colored Stirling number of the second kind. See Matsu-

moto and Novak, who also give another combinatorial interpretation of these numbers. 
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[A204579] http://oeis.org/A204579 

A204579 Triangle read by rows: matrix inverse of A036969.  

 1, -1, 1, 4, -5, 1, -36, 49, -14, 1, 576, -820, 273, -30, 1, -14400, (...)  

COMMENT  This is a signed version of A008955 with rows in reverse order. - Peter Luschny, Feb 04 2012 (...) 

 

[Project-Index]  http://go.helms-net.de/math/binomial_new/index.htm 
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