04 "Gauss"-matrix GS

Abstract

The matrix $\mathbf{G S}$ occurs as triangular scheme of coefficients, if the derivatives of the Gauss-function are computed.

This article is just a minor extension of the main subject (which covers binomial and related matrices) and is added here only because of the intriguing hierarchy of the ma-trix-logarithms of GS and the binomial-matrix. The problem of the computing of integrals is only mentioned at the end, but it seems to be part of an interesting simple scheme, and is related to the techniques of divergent summation, which will be dealt with in a later chapter.

Contents:

1. Definitions/ Identities
1.1. The (normal) Gaussian-function (normal distribution) and derivatives
1.2. The matrix GS and GS ${ }^{-1}$

The column-signed version GS_{j} :
1.3. The reciprocal GS^{-1}

Historical excurs
1.4. The matrix-logarithm of GS
2. Application to the system of derivatives of the Gauss-function $N(z)$
3. Extension to negative derivatives: integrals
4. References

For an intro about the conventions of notation and naming of basic-matrices see [intro] http://go.helms-net.de/math/binomial/intro.pdf

1. Definitions/ Identities

1.1. The (normal) Gaussian-function (normal distribution) and derivatives

The matrix $\boldsymbol{G} \boldsymbol{S}$ occurs, if the coefficients of z in the derivatives of the (standardized) Gauss-function $N(z)$ are computed.

Let
(1.1.1.)

$$
N(z)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2}\right)
$$

Rewrite the constant term as c, and the exponential-term as $E(z)$. Then define
(1.1.2.) $\quad f:=N(z)=c^{*} E(z)$

Then

```
(1.1.3.) \(f=c E(z) *(1)\)
    \(f^{\prime}=c E(z) *(-1 z)\)
    \(f^{\prime \prime}=c E(z) *\left(-1+1 z^{2}\right)\)
    \(f^{\prime \prime \prime} \quad=c E(z) *\left(\begin{array}{cc}3 z & \left.-1 z^{3}\right)\end{array}\right.\)
    \(f^{(4)}=c E(z) *\left(\begin{array}{ccc}3 & -6 z^{2} & +1 z^{4}\end{array}\right)\)
    \(f^{(5)}=c E(z) *\left(-15 z+10 z^{3}-1 z^{5}\right)\)
    \(f^{(6)} \quad=c E(z) *\left(-15+45 z^{2} \quad-15 z^{4} \quad+1 z^{6}\right)\)
    ... etc
```


1.2. The matrix $G S$ and GS $^{-1}$

The infinite lower triangular matrix of the cofactors of z in (1.1.3) is
Example:
(1.2.1.) $\quad G S=$

$$
\left[\begin{array}{rrrrrrrr}
1 & -1 & . & . & . & . & C & C \\
0 & -1 & 1 & & . & & \ddots & \\
-1 & 0 & 1 & - & & & & \\
0 & 3 & 0 & -1 & . & & . & \\
3 & 0 & -6 & 0 & 1 & - & & \\
0 & -15 & 0 & 10 & 0 & -1 & & \\
-15 & 0 & 45 & 0 & -15 & 0 & 1 & \\
0 & 105 & 0 & -105 & 0 & 21 & 0 & -1
\end{array}\right]
$$

For the following definition it is easier to use $\boldsymbol{G S}^{-1}$, the reciprocal of $\boldsymbol{G} \boldsymbol{S}$, which is the unsigned version ${ }^{1}$, also steming from the formal inverse of the N-function:
(1.2.2.) $\quad 1 / N(z)=\sqrt{2 \pi} \exp \left(\frac{z^{2}}{2}\right)$

Example:
(1.2.3.) $\quad G S^{-I}=$

[^0]Defining a factorial function only valid for the even numbers $n=2 m$:

$$
f(n)=\left\{\begin{array}{cl}
0 & \text { if } n \text { is odd } \tag{1.2.4.}\\
\frac{1}{2^{n / 2}} \frac{n!}{(n / 2)!} & \text { if n is even }
\end{array}\right.
$$

for instance

$$
\begin{aligned}
& f(0)=f(2)=1 \\
& f(4)=1 * 3 \\
& f(6)=1 * 3 * 5 \\
& f(8)=1 * 3 * 5 * 7
\end{aligned}
$$

then for example, the unsigned entries in row r of the first column of $\boldsymbol{G S}^{-1}$ are:
(1.2.5.) $G S_{r, 0}^{-1}=f(r)$

The whole matrix $\boldsymbol{G} \boldsymbol{S}^{-1}$ can now be seen as the hadamard-product of the binomial-matrix \boldsymbol{P} and the triangular matrix, which occurs, if the first column of $\boldsymbol{G} \boldsymbol{S}^{-1}$ is downshifted by one row for each column: Example:
where "a " denotes the elementwise (Hadamard)-multiplicator

Description of all entries:

(1.2.6.)	$G S^{-1}{ }_{r, c}$	$=0$	
		$=f(r-c) * \operatorname{binomial}(r, c)$	
		(if $(r-c)$ is odd)	
(if $(r-c)$ is even)			

or, using the Hadamard-product-representation
GS $:=G S_{r, c}=\frac{1}{2^{m}} * \frac{(2 m)!}{m!} * P_{r, c} \quad$ where $m=\frac{r-c}{2},(r-c)$ is even
explicitely:

$$
\text { (1.2.7.) GS }:=G S_{r, c}=\frac{1}{2^{m}} \frac{1}{m!} \frac{r!}{c!} \quad \text { if }(r-c) \text { is even, } m=(r-c) / 2
$$

The column-signed version $G S_{j}$:

A different column-signed version is

$$
\text { using } \quad J=\operatorname{diag}(1,-1,1,-1, \ldots .)
$$

(1.2.8.) $\quad G S_{J}=G S * J=J^{*} G S$

Example:

$$
G S_{J}=G S * J=J * G S
$$

This triangle with this sign-schema is also known as "Coefficients of unitary Hermite polynomials He_n(x)" in the "Online Encyclopedia of Integer Sequences" (OEIS) [A066325].

A066325 Coefficients of unitary Hermite polynomials He_n(x).
$\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{- 1}, \mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{- 3}, \mathbf{0}, \mathbf{1}, \mathbf{3}, \mathbf{0}, \mathbf{- 6}, \mathbf{0}, \mathbf{1}, 0,15,0,-10,0,1,-15,0,45,0,-15,0,1,0,-105,0,105$, $0,-21,0,1,105,0,-420,0,210,0,-28,0,1,0,945,0$,

COMMENT Also number of involutions on n labeled elements with k fixed points times (-1$)^{\wedge}$ (number of 2 -cycles).
Also called normalized Hermite polynomials.
AUTHOR
Christian G. Bower (bowerc(AT)usa.net), Dec 142001
E. Weissstein in Mathworld [$\underline{m w}$-hermite] reports this as .

A modified version of the Hermite polynomial is sometimes (but rarely) defined by

$$
\begin{equation*}
\mathrm{He}_{n}(x) \equiv 2^{-n / 2} H_{n}\left(\frac{x}{\sqrt{2}}\right) \tag{59}
\end{equation*}
$$

(Jörgensen 1916; Magnus and Oberhettinger 1948; Slater 1960, p. 99; Abramowitz and Stegun 1972, p. 778). The first few of these polynomials are given by
$\mathrm{He}_{1}(x)=x$
$\mathrm{He}_{2}(x)=x^{2}-1$
$H e_{3}(x)=x^{3}-3 x$
$\mathrm{He}_{4}(x)=x^{4}-6 x^{2}+3$
$H \mathrm{H}_{5}(x)=x^{5}-10 x^{3}+15 x$.
When ordered from smallest to largest powers, the triangle of nonzero coefficients is 1 ; 1 ; $-1,1 ;-3,1 ; 3,-6,1 ; 15,-10,1 ; \ldots$ (Sloane's A096713).

1.3. The reciprocal GS^{-1}

Defining a diagonalmatrix, containing alternating signs,

from which also follows
(1.3.2.)

$$
J_{2}^{-1}=J_{2}
$$

then to determine the reciprocal is a simple similarity-transformation/-scaling:
(1.3.3.) $\quad G S^{-1}=J_{2} * G S * J_{2}^{-1}$
$\boldsymbol{G S}$ is just the row and column-signed version of its reciprocal, and the reciprocal has only positive values:

Example:

This similarity-pair $\boldsymbol{G S}$ and $\boldsymbol{G} \boldsymbol{S}^{-1}$ is mutually related completely analoguous to the pair of the Pascalmatrices \boldsymbol{P} and its reciprocal \boldsymbol{P}^{-1}, which are also similar-transforms according to $\boldsymbol{P}^{-1}=\boldsymbol{J} * \boldsymbol{P} * J^{l}$
(see more about \boldsymbol{P} and \boldsymbol{P}_{J} in the chapter [binomialmatrix $]$)

A consequence of this is, that the row or column-signed-version

$$
j G S=J_{2} * G S=j G S^{-1}
$$

is its own reciprocal
(1.3.4.) $j G S * j G S=I$
since

$$
J_{2} G S=G S^{-1} * J_{2}=G S^{-1} * J_{2}^{-1}=\left(J_{2} G S\right)^{-1}
$$

Example:

Historical excurs

In his article "Über eine ausgezeichnete Eigenschaft der Laguerre- und Hermite-Polynomiale" ${ }^{2}$ KURT ENDL reports this property as "involutory"; common and special to those two (rowscaled) sets of polynomials (and different from other common orthogonal polynomials like Legendre-, Tschebyscheffpolynomials).
Since the matrix \boldsymbol{L} of the coefficients of the Laguerre-polynomials is only a row-scaled version of the $\boldsymbol{P}_{2 J}$-matrix (see binomialmatrix), and this only a similarity-scaled version of \boldsymbol{P}_{J},
(1.3.5.)

$$
P_{2 J}=P_{2} * J={ }^{d} F a c(1) * P_{J} *{ }^{d} F a c(1)^{-1}
$$

(1.3.6.)

$$
L={ }^{d} F a c(1)^{-1} * P_{2 J}
$$

and \boldsymbol{P}_{J} being its own reciprocal:
(1.3.7.) $\quad P_{J}=P_{J}^{-1}$
it follows that
(1.3.8.) $\quad P_{2 J}=P_{2 J}^{-1}$
as well as
(1.3.9.) $\left.\quad\left({ }^{d} \operatorname{Fac}(1) * L\right)=P_{2 J}=P_{2 J}{ }^{-1}={ }^{d} \operatorname{Fac}(1)^{*} L\right)^{-1}$

ENDL observed this self-reciprocity of the rowscaled Laguerre-matrix as well as of the rowscaled Hermitean matrix (here in its normed version),
(1.3.10.) $\quad j G s=(j G S)^{-1}$
and defines a family of orthogonal polynomials P_{k}, which all share this self-reciprocal property, where P_{1} represents the (rowscaled) Laguerre-polynomials and P_{2} the (rowscaled) Hermitean polynomials.
In my notation this relates to \boldsymbol{P}_{2} and $\boldsymbol{G S}$, which occur as matrix-exponentials of basic subdiagonalmatrices (see chapter below) which contain

- binomial $(r, 1)(=r) \quad$ in the first subdiagonal ($\boldsymbol{P}\left(\right.$ Pascal/Binomial), resp. r^{2} in \boldsymbol{P}_{2} (Laguerre)),
- binomial($(r, 2)$ in the second subdiagonal ($\boldsymbol{G} \boldsymbol{S}^{-1}$ (Hermitean)),

I assume (without verification) that EnDL's hierarchy is the obvious extension of this scheme.

[^1]
1.4. The matrix-logarithm of GS

$\boldsymbol{G} \boldsymbol{S}^{-1}$ has a special simple and remarkable matrix-logarithm, very close to that of the binomialmatrix:
(1.4.1.) $\log \left(G S^{-1}\right):=\ln G S_{c, c+2}=\operatorname{binomial}(c+2,2)$

where the second principal diagonal has the binomial-coefficients binomial($(+2,2)$ as entries in row/column ($r=c+2, c$).

The inverse result then of the simplem sign-change for the matrixlogarithm of $\boldsymbol{G S}$
(1.4.2.) $G S=\exp \left(-\log \left(G S^{-1}\right)\right)$

Example

\qquad

2. Application to the system of derivatives of the Gauss-function N(z)

In matrix-notation the formula (1.1.3) gives a vector $\boldsymbol{D} \boldsymbol{N}(z)$ of derivatives of $N(z)$ depending on a pow-erseries-vector $\boldsymbol{V}(z)$ in the variable z.

This also means, each r^{\prime} th row-entry of $\boldsymbol{D N}(z)$ contains the value of the r^{\prime} th normalized Hermitepolynomial evaluated at $-z$, additionally scaled by the $c E(z)$-term in (1.1.3):
(2.1.1.) $\quad D N(z)=c E(z) * G S * V(z)$
or more explicitely
(2.1.2.)

$$
D N(z)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2}\right) * G S * V(z)
$$

with the value of the r 'th derivative at z in row r of the result.
ENDL mentions another benefit, if such polynomials (as given here) own the self-reciprocity:
Since $\boldsymbol{j} G \boldsymbol{S}$ is its own reciprocal, a right-multiplication with a powerseries $\boldsymbol{V}(z)$, which results in a vector $Y(z)$, and the inverse operation to calculate $\boldsymbol{V}(z)$ from the given $\boldsymbol{Y}(z)$ can be interchanged with the same coefficients-matrix (which applies then analoguously to \boldsymbol{P}_{J} and $\boldsymbol{P}_{2 J}$):
(2.1.3.) let
$j G S * V(z)=\quad Y(z)$
(2.1.4.) then
$V(z)=j G S * Y(z)$
with the same set of coefficients

3. Extension to negative derivatives: integrals

The simple form of the matrix-logarithm suggests to extend it to negative indexes.
For instance, a shift by 5 rows/ 5 columns gives
(3.1.1.) $\log (G S):=\ln G S_{c, c+2}$

$$
=\text { binomial }(a b s(c-5)+2,2)
$$

To evaluate this for the integrals, this matrix must be assumed with infinite extension to the left and the $\boldsymbol{V}(z)$-vector infinite extension to the top, representing the negative powers of z. The extension of $\boldsymbol{G} \boldsymbol{S}$ to the left is simply a reflection of the original matrix $\boldsymbol{G S}$ at the $45-\mathrm{deg}$ line, so the summation of a row of $\boldsymbol{G S}$ with the (infinitely extended) $\boldsymbol{V}(z)$-vector implies the sum of products of factorials and negative powers of z, which is divergent for each $z<>0$.

If this heuristic is true, then the first integrals of $N(z)$ could be written derived from expression for the first integral:

$$
\begin{equation*}
\int N(z) d z \quad=N(z) *\left(\frac{1}{z}-\frac{1}{z^{3}}+\frac{3}{z^{5}}-\frac{15}{z^{7}}+\frac{105}{z^{9}}+\ldots \pm \frac{(2 k-1)!!}{z^{2 k+1}} \ldots\right) \tag{3.1.3.}
\end{equation*}
$$

Then the extension to higher integrals should be:
(3.1.4.)

$$
\begin{aligned}
& \int^{(1)} N(z) d z=\frac{\exp \left(\frac{(z \hat{l})^{2}}{2}\right)}{\sqrt{2 \pi}} * \frac{1}{z}\left(1+\frac{1}{(z \hat{\imath})^{2}}+\frac{3}{(z \hat{\imath})^{4}}+\frac{15}{(z \hat{\imath})^{6}}+\frac{105}{(z \hat{\imath})^{8}}+\ldots+\frac{(2 k-1)!!}{(z \hat{\imath})^{2 k}} \ldots\right) \\
& \int^{(2)} N(z) d z=\frac{\exp \left(\frac{(z \hat{l})^{2}}{2}\right)}{\sqrt{2 \pi}} * \frac{1}{z^{2}}\left(1+\frac{1 * 3}{(z \hat{\imath})^{2}}+\frac{3 * 5}{(z \hat{\imath})^{4}}+\frac{15 * 7}{(z \hat{\imath})^{6}}+\frac{105 * 11}{(z \hat{l})^{8}}+\ldots+\frac{(2 k-1)!!}{(z \hat{\imath})^{2 k}}\binom{2 k+1}{1} \ldots\right) \\
& \int^{(3)} N(z) d z=\frac{\exp \left(\frac{(z \hat{l})^{2}}{2}\right)}{\sqrt{2 \pi}} * \frac{1}{z^{3}}\left(1+\frac{1 * 6}{(z \hat{l})^{2}}+\frac{3 * 15}{(z \hat{l})^{4}}+\frac{15 * 28}{(z \hat{l})^{6}}+\frac{105 * 45}{(z \hat{l})^{8}}+\ldots+\frac{(2 k-1)!!!}{(z \hat{l})^{2 k}}\binom{2 k+2}{2} \ldots\right) \\
& \int^{(4)} N(z) d z=\ldots
\end{aligned}
$$

I don't know, whether a handy analytical expression for such a divergent summation depending on a variable parameter z can be given; but conversely, for instance a value for the summation of the first series at $z=1$ could be given by the known value of the integral at the same z.

I found a related remark in [Knopp], which reflects the series for the first integral:
304. §66. B. Beispiele für das Summierungsproblem.

Durch partielle Integration stellt man leicht fest, da B diese Funktion mit der in I angetroffenen identisch ist.
b) Wenn die asymptotische Reihe

$$
1-\frac{1}{2 \cdot x}+\frac{1 \cdot 3}{2^{2} \cdot x^{2}}-+\cdots+(-1)^{n} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n} \cdot x^{n}}+\cdots
$$

vorgelegt ist, hat man $\Phi\left(\frac{u}{x}\right)=\left(\mathrm{I}+\frac{u}{x}\right)^{-t}$ und folglich

$$
F(x)=\sqrt{x} \int_{0}^{\infty} \frac{e^{-u}}{\sqrt{u+x}} d u=2 e^{x} \sqrt{x} \int_{\sqrt{x}}^{\infty} e^{-t^{\prime}} d t
$$

Dies liefert noch die asymptotische Entwicklung

$$
G(z)=\int_{z}^{\infty} e^{-t^{2}} d t=\frac{1}{2} e^{-z^{2}}\left(\frac{1}{z}-\frac{1}{2 z^{3}}+\cdots\right)
$$

für das sog. Gausssche Fehlerintegral, das in der Wahrscheinlichkeitsrechnung von besonderer Bedeutung ist.

Konrad Knopp: Unendliche Reihen, S 571, digicenter Univ Göttingen

4. References

[Project-Index] \quad http://go.helms-net.de/math/binomial/index

$[$ Intro]	$\underline{\text { http://go.helms-net.de/math/binomial/intro.pdf }}$
[binomialmatrix]	$\underline{\text { http://go.helms-net.de/math/binomial/01_1 binomialmatrix.pdf }}$
[signed binomial]	$\underline{\text { http://go.helms-net.de/math/binomial/01_2 signedbinomialmatrix.pdf }}$
[Gaussmatrix]	$\underline{\text { http://go.helms-net.de/math/binomial/04_1 gaussmatrix.pdf }}$
[Stirlingmatrix]	http://go.helms-net.de/math/binomial/05_1_stirlingmatrix.pdf
[Hasse] http://go.helms-net.de/math/binomial/01_ x_recihasse.pdf	

[A066325] http://www.research.att.com/~njas/sequences/A066325
[Gaussian-function] http://mathworld.wolfram.com/GaussianFunction.html
[Erf-function] http://mathworld.wolfram.com/Erf.html
[Hermite-polynomials] http://mathworld.wolfram.com/HermitePolynomial.html
Weisstein, Eric W. "Hermite Polynomial."
From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/HermitePolynomial.html
[Endl] http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN266833020_0065
Über eine ausgezeichnete Eigenschaft der Koeffizientenmatrizen des Laguerreschen und des Hermiteschen Polynomsystems. Endl,Kurt
In PERIODICAL VOLUME 65 Mathematische Zeitschrift
[Knopp] http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN378970429

Gottfried Helms

[^0]: ${ }^{1}$ (for details see chapter "the reciprocal" below).

[^1]: 2^{2} "on a special property of the Laguerre and Hermite-polynomials" (see [Endl])

