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10-4 A Powertower-sum 

 

Abstract: A formula for the summing of infinitely increasing powertower-expressions is 

given. It focuses the two-parameter problem S(s,x) = x - s
x
 + ssx - sssx

 ... 

The solution is an infinite polynomial in x, whose coefficients as[k] are dependent of the 

chosen base-parameter s. The range for admissible s is principally e
-e

 < s < r, where r > 

e
1/e

 (but I've not yet determined whether an upper bound exists). 

This implies, that s exceeds the known upper bound for the parameter s for the single infi-

nite powertower 
inf

s = sss...

 of the range e
-e

 < s < e
1/e

 where, if s is outside, the infinite po-

wertower-expression diverges. So possibly from here also another analytical continuation 

for the infinite powertower can be derived. On the other hand, when approching the lower 

bound the approximation seems to become irreparably bad and at the lower bound mono-

tonic increasing divergence in the parameters as[k] occurs. 

It is an experimental approach and needs further confirmation and characterizing of its 

radius of convergence. For the known convergent cases the results apparently agree with 

conventional summation; a rigorous proof for the consistency/regularity of its assignment 

of non-convergent cases needs further study. 

 

Keywords: infinite matrix, geometric series, tetration, infinite powertower, alternating se-

ries summation, divergent summation. 
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1. Statement of the problem and basic considerations 

1.1. A powertower problem / Intro 

(1.1.1.)  ......ssss1)s(S
s

ss sss
+−+−+−=  

(1.1.2.)  ......ssssx)x,s(S
xs

s
x

sx sssx
+−+−+−=  

Recently I found a possible path how to deal with such series, even for s and x, for which the expression 

for S is divergent. This however depends on proofs for convergence (or at least regular summability) of 

intermediate result. 

For a start, a current approximation for S(e,1) was: 

  S(exp(1),1) = 0.24696086896[0...  // divergent summation 

Although for divergent series a value is not defined in general, to some divergent series a meaningful 

and consistent value can be assigned by Cesaro-, Euler-, or Borel-summation. To other series these 

summation-methods do not suffice to "limit" them in terms of their partial sums.  

Now the actual case is a very badly diverging series, and for parameters s, where moreover s is outside 

the permitted range for infinite powertowers of  e-e
 <s < e

1/e
 it should be even more astonishing, that a 

value can be assigned at all. The described method cannot exceed the lower bound e-e , where it produ-

ces monotonic increasing divergent series of terms, which would have to be summed, but the upper 

bound of e1/e for the base-parameter s of an infinite powertower apparently can be exceeded. 

 

Operations of this type of iterated exponentiation are usually called "powertower","tetration" and sev-

eral results even concerning the infinitely iterated version were found beginning with some analyses by 

LAMBERT and EULER, for instance the assignement of a value as 2 = sqrt(2)sqrt(2)sqrt(2)
...

 I myself stum-

bled only by chance into the concept of tetration. 

I am currently studying repeated application of matrix-formulae in the context of binomialmatrices, 

power- and zetaseries, which for instance leads to a simple formulation and solution for the "summing 

of like powers problem". 
1
(see article in the project index). The method of iterated application of a ma-

trixoperation, and to find a meaningful solution for the idea of infinite iterated application (as it is basi-

cally done with the elementary shorthand formula for the evaluation of the geometric series for scalar 

parameters), gave a solution in terms of zeta-values much similar to the bernoulli-polynomials. 

In the context of this, I realized, that another matrix operation yields the exponential-series when fed by 

a powerseries, and iterated application would analoguously give iterated exponentials - with the per-

spective to have a solution for the infinite iteration as well - by the same means, which showed to be 

successful with the powerseries and the zeta-values/ bernoulli-numbers. 

The result of the method is, that for parameters s and x in the formula  

  ......ssssx)x,s(S
xs

s
x

sx sssx
+−+−+−=  

one gets a polynomial in x, where the coefficients as,[k] are dependend on s: 

  S(s,x) = limit    as,[0] + as,[1] x +  as,[2] x
2
 +  as,[3] x

3
 +  .... 

which for x=1 reduces finally to the simple sum: 

  S(s,1) = - as,[0]  = - limit  Σ  bs,[k]  

If the sequence of coefficients bs,[k] or as,[k] diverge, but oscillate in sign, which happens near the lower 

bound s = e
-e

 + eps they may still be Euler-summable, - but I could not yet work out an estimation for 

their rate of growth, so such attempted results are questionable. 

                                                 
1
 http://go.helms-net.de/math/binomial_new/04_3_SummingOfLikePowers.pdf 
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1.2. Transformation of a powerseries into an exponential series 

Assume, I have the coefficients of the powerseries of x in a vector 

(1.2.1.)    V(x) = column([ 1, x, x
2
 , x

3
 , ...]) 

Now assume another vector A0, containing 

(1.2.2.)   A0 = column([1/0!, 1/1!, 1/2!, ...]) 

then the rowvector V(x)~ by A0 is 

(1.2.3.)    V(x)~ * A0 = exp(x) 

Now I have another vector A1, and this performs 

(1.2.4.)   V(x) ~ * A1 = exp(x)
2
  

and assume, I have a set of vectors A0, A1,... collected in a matrix A, giving 

(1.2.5.)   V(x)~ * A = [ exp(x) , exp(x)
2
 , exp(x)

3
 , ...] 

or more precisely a matrix B ( like A with an additional left column) which performs 

(1.2.6.) V(x)~ * B = [ 1,  exp(x) , exp(x)
2
 , exp(x)

3
 ,...] 

then I can say: 

(1.2.7.) V(x) ~ * B = V(y)~     // where y = exp(x) 

and B transforms a powerseries in x in one of exp(x), providing the characteristic for the result y to re-

present a powerseries again. 

 

 

1.3. Iterated application 

Now, if I consider iterated application, then I have 

(1.3.1.)   V(x)~            * B = V(exp(x))~ 

   V(exp(x))~       * B = V(exp(exp(x)))~ 

   V(exp(exp(x)))~  * B = V(exp(exp(exp(x))))~ 

 ... and so on. 

I may write this in terms of powers of B: 

(1.3.2.)   V(x)~           * B
0
 = V(x)~ 

   V(x)~           * B
1
 = V(exp(x))~ 

   V(x)~           * B
2
 = V(exp(exp(x)))~ 

   V(x)~           * B
3
 = V(exp(exp(exp(x))))~ 

   ... 

   V(x)~           * B
k
 = V(...)~ 

  ... 

B is not triangular, so its powers are not defined for infinite dimension - but it seems, that this problem 

is manageable: if no conventional convergence occurs, then at least in terms of Euler-summation, see 

the next chapter. 

The alternating sum of theses values could then be written in terms of a geometric series of B: 

(1.3.3.)   V(x)~ * (B
0
 - B

1
 + B

2
 - B

3
 + B

4
  +... - ... ) 

          = V(x)~ - V(exp(x))~ + V(exp(exp(x))) - ... 

which is badly diverging in each entry of the result rowvector besides that of column 0, where we get 

the alternating series 1-1+1-1+... which may be evaluated by Eulersummation to the value ½. 
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On the other hand, for a geometric series the shorthand formula is also valid for matrices, 

(1.3.4.)     (I - B + B
2
 - B

3
 + B

4
 -+...) * ( I + B)  = I 

(1.3.5.)     (I - B + B
2
 - B

3
 + B

4
 -+...)              = (I + B)

-1
  = M 

writing M for the reciprocal term 

(1.3.6.)    M = (I + B)
-1

  

if the powers can be used and the parenthese is invertible. 

 Excurs to the zeta-problem 

The same idea was apparently successfully applied to the Pascal-matrix P, which implements the bi-

nomial-theorem for a powerseries V(x) by  

 P*V(x) = V(x+1) 

and 

   1/x V(1/x)~ * P
-1

 = 1/(x+1) * V(1/x+1) 

The infinite iterated application and alternative summation 

 (P
0
 - P

1
 + P

2
 - ...) V(1) = H = [η(0), η(-1) , η(-2), ...]  // where η is the eta-function 

can be performed by Euler-summation of the components or by the inversion of I + P: 

 ETA = ( I + P)
-1

 

and gives a matrix ETA similar to that of the matrix of coefficients of bernoulli-polynomials (which 

contain ζ-values with binomial scaling) and performs the same summation as expected by 

 ETA * V(1) = H 

with H containing the η(-r)-values in row r. The same concept can, if the poles at ζ(1) are appropriately 

handled, be applied to the ζ-function (only we cannot use the matrix-inversion) and leads the to a ma-

trix ZETA, which contains the coefficients of the integrals of the Bernoulli-polynomials, and indeed 

performs the non-alternating summation of like powers to ζ-values (and also to finite sums of like po-

wers in the same sense, as the difference of two Hurwitz-zeta-terms provides it with ζ(s,1) - ζ(s,a) ) 

The current approach is simply an analogy for the matrix B instead of P, where in the eta/zeta-case we 

have a triangular matrix P, which behaves much simpler than the infinite square-matrix B. 

 

 

Heuristically for finite dimensions d, the matrices dM seems to stabilize with higher d, and a convergent 

for dM with d->inf seems reasonable, so practically I assume the finite version of dM with d=64 as suffi-

cient precise, where I calculate with float-precision of about 200 digits (Pari/Gp), and final approxima-

tions to ~ 12 significant digits for display.  

But this needs more consideration and a proof, however for the beginning a qualitative consideration 

may suffice. 
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2. Matrix B, its powers and summability of its alternating sums of powers 

2.1. The structure of Matrix B 

The structure of matrix B is very simple: it is essentially a vandermonde matrix-premultiplied by inver-

se of factorials: 

  B = F
-1

 * VZ 

where  

 

(2.1.1.) VZ =  

 

(2.1.2.) F
-1

 = diag( [1/0! , 1/1! , 1/2!, ...]) 

diag(  ) 

(2.1.3.) B =  F
-1

 * VZ 

 

 

The columns in B provide sequences which absolutely converge to zero in each column, since the pre-

multiplication by inverse factorials limit and later dominate the increasing powers of natural numbers. 

So the premultiplication by a powerseries as in (1.3.1) yields the following with trivially bounded values 

in all columns of the result: 

Example: 

(2.1.4.)  V(1)~    * B = V(exp(1))~ 

 

 

*   

 

and in fact we have the transformation of a powerseries-vector in 1 in one of exp(1): 

(2.1.5.)   [1,  1,  1,  1,  1,  ....] * B = [ 1,  e , e
2
 , e

3
 ,...] 

 

The same is valid for each power of B, although the size of the entries increases quickly. 
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2.2. A parametrization for B 

To check this for convergent case first note, that B is easily parametrizable, in the sense, that for the 

current B we have formally 

(2.2.1.)  V(x)~ * B = V(e
x
)~  

and the result in the second column col=1 of the repeated iteration represents using M then 

(2.2.2.)  S(e,x) = x - exp(x) + exp(exp(x)) - ... 

 

Since the columns in B are simply exponential-series in 1 = log(e), we may premultiply B with a power-

series-vector of log(s) to get the parametrized version Bs of B: 

 

(2.2.3.)  Bs = diag(V(log(s))) * B 

   V(x)~ * Bs = V(s
x
)~  

 

and in the second column of the result we get then 

by   V(x)~ * Ms  = V(x)~ - V(s
x
)~  + V(ssx

)~ - ... 

(2.2.4.)  S(s,x)   = V(x)~ * Ms [,1] 

     = x - s
x
 +ssx

 - ...  

2.3. Powers of B 

B, of infinite dimension, is not triangular, so the entries of powers of B must be checked for convergen-

ce or regular summability of the involved series of terms. Although the heuristics seem all good and 

trustworthy, I can currently only make crude guesses.  

Possibly I have a successful path for a more rigorous proof for convergence of the series, which con-

struc the entries of each finite power of B.  

The first nontrivial column in each power of B is the second column, B[,1]. It seems, that the entries of 

the k'th power of B equal the entries of the first column of the k-fold iterated exponential of the Pascal-

matrix Pk(0), which is described in more detail in the article "The binomial matrix". Here it may suffice 

to say, that it is the factorial similarity scaling of P itself: 

  P0 :=  Pk(0)= F
-1

 * P * F .  

Then we seem to have  

        (P0)[,0]   = B [,1] 

     exp(P0)[,0]  = B
2
[,1] 

  exp(exp(P0))[,0]  = B
3
[,1] 

   ... 

and due to the property that in 

  e * exp( P0 - I) = lim  exp(P0)
(*)

 

  e
e
 * exp( exp(P0) - e*I) = lim exp( exp(P0)) 

  ... 

the (P0 - I) expression as well as its iteratives are nilpotent, we have the tool to determine the entries in 

question by finite number of constants and exponentials, and thus have a proof for the boundness of 

entries in the powers of B. (The subsequent columns in Bk
 are scaled versions of that second column)  

                                                 
(*) This is not defined in the context of formal powerseries; but it  is easy to show, that this is the meaningful limit. 
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2.4. Investigation of a convergent case Bs where s=sqrt(2) 

2.4.1. Powers of Bs 

First let's look at the entries of some powers of Bs: we must make sure, that a multiplication Bs * Bs does 

not lead to infinite values even when thought in infinite dimension. 

Examples: 

(2.4.1.1.) Bs = 

 

(2.4.1.2.) Bs
2
  

 

(2.4.1.3.) Bs
3
  

 

 

The entries of the powers of Bs occur as matrix-multiplication of a row with a column.  

The rows are zeta-like-sequences, while the columns are powerseries dominated by reciprocal factori-

als. The infinite series of the elementwise multiplications is therefore again dominated by the reciprocal 

of the factorials and is thus convergent to a finite value. This is valid for all entries of Bs
2 .  

If Bs
2 is postmultiplied by another instance of Bs to make the third power Bs

3, the growthrate in the rows 

of Bs
2 is crucial. But the quotient of subsequent entries in row 0 is constant and in all other rows de-

creasing asymptotically to a constant.  

The quotient along the columns is always decreasing to zero. So the growthrate of all occuring terms of 

one row/col-matrixmultiplication is again eventually negative, their absoulute value decreasing to zero 

and the sum therefore bounded. 

So the instantiation of powers of Bs seems to be justified. 

 

2.4.2. Alternating sum of powers of Bs  

This may not be so with the alternating sums of the powers of Bs. I could not examine that question in 

detail yet. But assumed, that the growthrate of the entries is not too fast, the alternating sum of powers 

of B can be approximated by Euler-summation. With this I get the approximate infinite alternating sum 

of powers of Bs using 24 powers beginning with Bs
0 as 

(2.4.2.1.) AS(Bs
k
 )~ 

 

 

where in the current case we are interested in the sum of the first and the second column, which repre-

sent the alternating sums of S0 = 1 - 1 + 1 - 1 + 1 -... and S1 = 1 - s + s
s
 - sss

 + ... respectively. 
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The series, formed by the column-entries, is finite for the first columns and seem to converge even con-

ventionally for the second column, so likely no further divergent summation technique is required. The 

sum of the second column using dimension dim=32 is 

(2.4.2.2.)  S1 ~ 0.362301547355 

which agrees with the direct computation via Eulersummation of the first 32 terms: 

(2.4.2.3.)  S1_direct ~ 0.362301547267 

in the first 10 decimal places. 

 

 

2.4.3. Using the shortcut-formula for geometric series 

 

The shortcut-formula for the alternating geometric series of Bs is: 

(2.4.3.1.)  Ms = ( I + Bs)
-1

  

Using this I get: 

 

Example: 

(2.4.3.2.) Ms = ( I + Bs)
-1

  

 

 

which agrees perfectly with the Euler-summed result of the individual power-matrices. 
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2.5. Investigation of a divergent case Bs (= "Be") where s=exp(1)  

2.5.1. Powers of Be 

Again let's look at the entries of powers of Be first: we must make sure, that a multiplication Be * Be 

does not lead to infinite values even when thought in infinite dimension. 

Examples: 

(2.5.1.1.) Be 

 

(2.5.1.2.) Be
2
  

 

(2.5.1.3.) Be
3
  

 

 

The entries of the powers of Be occur as matrix-multiplication of a row with a column.  

The rows are of the order of zeta-sequences, while the columns are powerseries dominated by recipro-

cal factorials. The infinite series of the elementwise multiplications is therefore again dominated by the 

reciprocal of the factorials and is thus convergent to a finite value. This is valid for all entries of Be
2 .  

If Be
2 is postmultiplied by another instance of Be to make the third power Be

3, the growthrate in the rows 

of Be
2 is again crucial. But the quotient of subsequent entries in row 0 is constant and in all other rows 

decreasing asymptotically to a constant. The quotient along the columns is always decreasing to zero. 

So the growthrate of all occuring terms of one row/col-matrixmultiplication is again eventually nega-

tive, their absoulute value decreasing to zero and the sum therefore bounded. 

So also the instantiation of powers of Be seems to be justified. 

 

2.5.2. Direct alternating sum of powers of Be  

 

This is not so with the alternating sum of the powers of Be. The partial sums of the respective entries of 

a cell Be[row,col] over all powers of Be
k diverge strongly and of the alternating sums diverge with oscil-

lating values. I don't have an estimation yet but since the column sums of each partial nonalternating as 

well as of the alternating partial sum of Be
0
 + Be

1
 + Be

2
 + Be

3
 + ... + Be

k or  Be
0
 - Be

1
 + Be

2
 - Be

3
 + ... +- Be

k 

diverge so at least the partial sum of at least one entry in that column must diverge with a comparable 

growth rate. 

So I assume we don't have an instrument to sum the alternating series of powers of Be by for instance 

Euler-summation. 
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2.5.3. Using the shortcut-formula for the alternating geometric series 

 

The shortcut-formula for the alternating geometric series of Be is: 

(2.5.3.1.)  Me = ( I + Be)
-1

  

 

Using this I get for dimension dim=32 by direct matrixinversion (Pari, precision 200 digits) : 

Example: 

(2.5.3.2.) Me = ( I + Be)
-1

  

 

 

which appears as a clear convergent, when dimensions are successively increased from dim=2 to 

dim=32. (see appendix 3.1 for a longer display of the first six columns) 

This is a much interesting and surprising result, since the most interesting aspect is the apparently con-

vergent series, formed by the entries of column col=1. 

 

The result of the summing of column 1 according to 

 

(2.5.3.3.)  S1 = S(e,1) = V(1)~ * Me[,1] =  1 - e + e
e
 - eee

 + ...  

 

 is then by direct summation 

(2.5.3.4.)  S1    =  0.246960868960... 

 

In chap 3 I study the inversion of (I + Bs) in more detail and it seems, that this method provides reason-

able values even for the parameters s, which are outside the conventional domain for infinite power-

towers (valid s are in  e-e < s < e
1/e

 ) and hence also exceed the upper bound for the possibility of evaluat-

ing the alternating sums of finite powertowers by direct or Euler-summation. 
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2.6. Sum-values derived at example parameters s 

s 1 - s  + s^s   - s^s^s    +  ... S(s,1) 

5 1 - 5  + 5^5   - 5^5^5    +   0.1976203324895644 

pi ~ 3.14 1 - pi + pi^pi - pi^pi^pi +  ... 0.2324670739643584 

e ~  2.71 1 - e  + e^e   - e^e^e    +  ...   0.2469608978527557 

2 1 - 2  + 2^2   - 2^2^2    +  ...   0.2874086990716591 

phi+1 (= 1.6180339887498948..)  0.3278048495149163 

sqrt(2)  0.3623015472668659 

phi (= 0.6180339887498948..)  0.7861534997409138 

1/2  0.9382530028218765 

 

The following are questionable, since at s=1/e occurs a singularity in the method. This singularity, how-

ever is removable, since approximations from below and above to the same finite value are possible: 

using 1/e ~ 0.3678794411714423 

1/e + 0.01  1.172056144413609 

1/e   --- division by zero --- 

1/e-0.01  1.223179007248831 

 

The following approach the non removable singularity at s=e
-e and the growthrate of the internal coeffi-

cients is not yet known to me 

<0.135 (e
-2

)  oscillating divergence  

Eulersummation doubtful 

0.0659 (e
-e

)  infinite sum of positive terms 

 

Arbitrary extensions like the following are specifically questionable, at least as the Euler-sum method is 

not well configured for complex summation (if at all), although the absolute values of the summation-

terms diverge "not too strong" 

The implicite value log(-1/2) is used by the Pari-convention as  ~  -0.69314718 + 3.141592*I  

s = -1/2 1 - s  + s^s   - s^s^s    + ..   0.37550 - 1.11870*I 
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2.7. Preliminary resume 

With some more tests it seems, that the range for the parameter s can be extended to positive reals bey-

ond the point of conventional divergence for the infinite powertower at s = e
1/e . Actually it seems, that 

the characteristic of Ms is even more "friendly" with increasing s in the currently checked region. 

On the other hand in this method occurs additional divergence in the computation of Ms at the point s = 

e
-1. However, looking at the matrix-multiplications in detail, it appears, that the occuring singularity can 

be removed and indeed a value to S(e
-1 ,1) can be assigned. This is investigated in the other manuscript, 

see footnote
2
.  

Values s <= e
-e  cannot be computed, since the coefficients, which must be summed, are all positive and 

increasing in value. With e-e
 < s < e

-2 the coefficients alternate in sign, and may be summable by Euler-

summation - but I don't have an idea about the characteristics of the growthrate of the absolute value of 

the coefficients, so here more analysis is needed. 

One may try to approximate sums for negative and complex values of s as well, using the principal 

branch for logarithms of negative or complex parameters. The characteristics of Ms , or more precisely 

the growth of the occuring coefficients for such parameters are not checked yet. 

 

 

 

For another crosscheck of this general idea, the equivalent, but somehow inverse, can be checked easily 

by low order summation-techniques: 

 T(x) = x - log(1+x) + log(1+log(1+x)) - log(1+log(1+log(1+x))) +... -   ... 

 

Here one needs to employ the factorial scaled matrix of stirling-numbers of first kind to construct B and 

M. I crosschecked the validity of the results according to the method described here against normal 

Euler-summation of the approximants and found consistent results. 

 

 

 

                                                 
2
 Critical point for summation with this method at s=exp(-1)  

http://go.helms-net.de/math/binomial_new/PowertowerproblemDocSummation.htm 
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3. Some details 

3.1. Convergence in the columns of Me  

Convergence of entries in the first few columns of Me (dim=32)  

 

 

 

3.2. Approximating inverses of (I+Bs) by its L-D-U-decomposition: 

Call (I + B) = B1, then I compute the inverse of B1 by its L-D-U-decomposition, according to 

(3.2.1.)  B1 = L * D * R 

where L is a lower triangular matrix, D is a diagonal matrix and R is a upper triangular matrix and the 

diagonals of L and R are normed to 1. Then  

(3.2.2.)  M = B1
-1

 = R
-1

 * D
-1

 * L
-1

 

The remarkable point is here, that L,D,R have constant entries for increasing dimension and thus their 

inverses L
-1

, D
-1

, R
-1

 . The change in an entry in M, which take place by increasing the dimension, is 

then due to one additional term, which is occuring from the single vector-product of the newly added 

row and column. 

This is also especially useful if this multiplication is studied for the limit of infinite dimension or for 

points, where intermediate singularities occur in the multiplication (if one of the elements of D approa-

ches zero, for instance) 

In the following the decomposition for (I + Be) and (I+Be)
-1 are given 
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3.2.3. The components 

Rational arithmetic  

(3.2.3.1.) tst = (I +  Be) 

 

 

 L-D-U-components 

 tst = L * D * R 

(3.2.3.2.) L =  

 

(3.2.3.3.) D =  diag()  

(3.2.3.4.) R =  

 

 

 Inverses 

(3.2.3.5.) R
-1 

=  

 

(3.2.3.6.) D
-1

=   diag() 
 

 

(3.2.3.7.) L
-1 

= 

 

 

 

Float arithmetic:  

 L-D-U-components 

(3.2.3.8.) L 

 

(3.2.3.9.) D=  

(3.2.3.10.) R 
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 Inverses 

(3.2.3.11.) R
-1

 

 

(3.2.3.12.) D
-1

  

(3.2.3.13.) L
-1

 

 

 

3.2.4. Asymptotics for Minf = B1inf
-1

 = R
-1

 * D
-1

 * L
-1

  

Rational artihmetic 

(3.2.4.1.) 2M= 
 

(3.2.4.2.) 3M= 

 

(3.2.4.3.) 4M= 

 

(3.2.4.4.) 5M= 

 

Float arithmetic: 

(3.2.4.5.) 2M = 
 

(3.2.4.6.) 3M = 

 

(3.2.4.7.) 4M = 

 

(3.2.4.8.) 5M =  

 

partial sums in Me at dimension dim=64 

(3.2.4.9.) 64M = 

 

(3.2.4.10.) 64M by 

Euler(2)-summation 
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3.2.5. Remarkable simplifications for the computation 

There are two significant simplifications for the computation of S(s,1) possible. 

 

1) We need only the second column of Ls
-1. 

This is due the fact, that only in the second column of the result we get out interesting result. 

(3.2.5.1.)  S(s,1) = V(1)~ * Rs
-1

 * Ds
-1

 * Ls
-1 

[,1] 

 

2) We need only the first row of Rs
-1. 

This is due the fact, that for infinite continuation 

  V(x)~ * Ms[,1] = x - s
x
 + s

sx
 - s

ssx

 + -  

for x=1 and x=0 the results are the same except for their sign: 

(3.2.5.2.)  S(s,1)  = V(1)~ * Ms[,1]    = 1 - s
1
 + s

s1
 - sss1

 + ...  

  S(s,0)  = V(0)~ * Ms[,1]     = 0 - s
0
 + s

s0
 - sss0

 + ...  = -1 + s - s
s
  + sss

 - ...  

   = - S(s,1) 

and conversely: 

(3.2.5.3.)  S(s,1)  = - S(s,0) 

In effect, we may write, using the letters ls, ds and rs for the inverses of Ls,Ds and Rs  

 

(3.2.5.4.) S(s,1) =- ∑
=

inf

0k

1,kk,kk,0 ls*ds*rs  

 

which may be replaced by Euler-summation, if the partial sums should appear as oscillating divergent. 

Since previous coefficients in rs, ds, ls do not change with increasing dimensions we are in a situation, 

that we can compute approximations of S(s,1) by successively computed partial sums of scalar coeffi-

cients as,k: 

(3.2.5.5.) nS(s,1) = ∑
=

n

0k

ks ,a  

which may then be analyzed in more detail for finding and removing singularities. 

 

A table for coefficients as,k for s=1 to 7 in small steps is in 

 http://go.helms-net.de/math/binomial_new/powertower/powertowertables.htm  

These tables show the smoothness of computation of values of S(s,1) for the powertowersums with 

bases s=1 to 7, which is beyond the bounds of convergence for a single infinite powertower. (Note that I 

used the letter x instead of s to make a clear difference to the capital letter S, which denotes the power-

towersum, because of the low formatting-convenience in the html-generating program.) 

 

An article, which deals specifically with a singularity at s=1/e, is in 

 http://go.helms-net.de/math/binomial_new/PowertowerproblemDocSummation.htm  

The singularity occurs in intermediate computations and is due to the method itself, but it comes out, 

that this singularity can be removed by approximation from below and above the critical value in s. 
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3.3. Another check for a conventionally convergent parameter /Example 

> What does your method give when the base of your iterated exponentiation  

> is changed from e to sqrt(2)?  When the latter base is used the terms  

> are bounded and you will get an Euler-summable expression, whose Euler  

> sum can be compared with what your method gives.  

>   

  

What I get is, even with (my) Eulersum of order 1 (direct summing)  

dim = 64 

%pri     B =    F-1*(P-1*St2F) * P~    \\ the initial version of B, performing summing with 

parameter exp(1) 

%pri     Btest  = dV(log(2)/2) * B    \\ test-variant which performs with parameter sqrt(2)  

 

 

 

3.3.1. Check appropriateness of Btest : for a single step of transformation 

 

    V(1)~ ---> V(sqrt(2))~    =  [1,1,1,1...]  ---> [1, sqrt(2),  sqrt(2)
2
 , sqrt(2)

3
, ...]  

---------------------------------------------------- 

%pri ESum(1.0)*dV(1)*Btest     \\ example-summation , Eulersum of low order 1 is possible  

 

  1.00000   1.41421   2.00000   2.82843   4.00000   5.65685   8.00000    

 

 

    V(1)~ ---> V(sqrt(2)
sqrt(2)

)~    =     [1,1,1,1...]  ---> [1, sqrt(2)
sqrt(2)

,  (sqrt(2)
sqrt(2)

)
2
 ,  ...]  

---------------------------------------------------- 

%pri ESum(1.0)*dV(1) * Btest2   \\ example-summation , Eulersum of low order 1 is possible 

 

  1.00000   1.63253   2.66514   4.35092   7.10299   11.5958   18.9305   

 

 

writing r2 as sqrt(2): 

    V(1)~ ---> V(r2 r2 r2
)~    =    [1,1,1,1...]  ---> [1, r2 r2 r2

,  (r2 r2 r2
 )

2
 , (r2 r2 r2

)
3
, ...]  

---------------------------------------------------- 

 

%pri ESum(1.0) * dV(1) * Btest3 

 

  1.00000   1.76084   3.10056   5.45958   9.61345   16.9277   29.8070    
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3.3.2. Now check results of infinitely iterated use of Btest by use of Mtest  

 V(1)~     -->    V(1)~  - V(r2)~  +  V(r2^r2)~   -  V(r2^r2^r2)~  + ... -... 

performed by 

 V(1) ~ * Mtest  = V(1)~  - V(r2)~  +  V(r2^r2)~   -  V(r2^r2^r2)~  + ... -... 

 

 B1test = matid(n) + Btest ;  

 tmp = CV_LR(B_test);     \\ compute L-D-U - components of tst for inversion 

     \\ result in matrices CV_L  CV_D  CV_R  

 dim = 64   \\ compute the Inverse of (I + Btest) using different dimensions  

 Mtest = EMMul(VE(CV_RInv,dim)    ,  VE(CV_DInv*CV_LInv,  dim), 1.0) 

  \\ compute the inverse matrix Mtest of B1test by inverses of L-D-U-components 

  \\ with    dim as selectable dimension, 

  \\         implicte euler-summation (here order 1.0) 

  \\         in the matrix-multiplications  

 

 

 \\ results 

%pri ESum(1.0) * dV(1) * Mtest  \\ Eulersum(1.0) 

 

  0.500000    0.362302    0.201330    0.0223437   -0.161780   -0.326291   -0.429142 ...  

 

where in the second column is the interesting result.  

Note, that for summation of the more right columns higher orders of the Euler-summation may be nee-

ded, so these numbers need be crosschecked.  

 

 

  

3.3.3. The result of the above operations is now:  

 

 S(sqrt(2),1)  ~  0.3623015472668659  

which represents 

 S(sqrt(2),1) = lim    1 - sqrt(2)
1
 + sqrt(2)sqrt(2)1

 - sqrt(2)sqrt(2)sqrt(2)1

 + ... - ... 

 

 which can be confirmed by ordinary Euler-summation of this series. 

  

Note, that using V(2) as initial powerseries we get 

 V(2)~ * Mtest = 2 * V(-1)~ = [2,-2,2,-2,...] 

%pri ESum(1.0) * dV(2) * Mtest   \\ Eulersum(1.0) 

     0.500000   1.00000   2.00000   4.00000   8.00000   16.0000   32.0000   

  and in the second column we have the implicte computation of:  

 S(sqrt(2),2)= lim  2 - sqrt(2)
2
 + sqrt(2)sqrt(2)2

 - sqrt(2)sqrt(2)sqrt(2)2

 + ... - ... 

 

 S(sqrt(2),2) = 2 - 2 + 2 - 2 + ... - ....  

 = 1  \\ Euler-summed 

 

which we would have expected by considering the formula before. 

 



 A Power-tower-application S. -20- 

 Identities with binomials,Bernoulli- and other numbertheoretical numbers Mathematical Miniatures 

4. Citations and suggestions for further reading 

I found the following resources worth reading further. To get an impression what they deal with and 

how I copied a bit of their contents here. 

4.1. Powertower: encyclopedia... 

4.1.1. Wikipedia 

http://en.wikipedia.org/wiki/Tetration   

Infinitely high power towers 

converges to 2, and can therefore be said to be equal to 2.  

The trend towards 2 can be seen by evaluating a small finite tower: 

 

In general, the infinite power tower converges for e 
− e

 < x < e
1 / e

.  

For arbitrary real r with 0 < r < e, let x = r
1 / r

, then the limit is r.  

There is no convergence for x > e
1 / e

 (max of r
1 / r

 is e
1 / e

). 

 

This may be extended to complex numbers z with the definition: 

    where W(z) represents Lambert's W function. 
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4.1.2. Mathworld 

http://mathworld.wolfram.com/PowerTower.html    

The value of the infinite power tower , where  is an abbreviation for , can be compu-

ted analytically by writing  

 (11)  

taking the logarithm of both sides and plugging back in to obtain  

 (12)  

Solving for gives  

 (13)  

where  is the Lambert W-function (Corless et al. 1996). 

  converges iff ( ; Sloane's A073230 and A073229), as shown by Euler 

(1783) and Eisenstein (1844) (Le Lionnais 1983; Wells 1986, p. 35).  

Knoebel (1981) gave the following series for  

 (14)  

(Vardi 1991),  

The special value is given by  

   (16)  

   (17)  
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4.2. Some Critical Points of the.... 

  http://www.faculty.fairfield.edu/jmac/ther/tower.htm    

Some Critical Points of the Hyperpower Function y = xx
x . .

 

Introduction to the infinitely iterated exponential function y = f(x) = xx
x . .

 

 

The interval of convergence for the HYPERPOWER function y = xx
x . . 

 

This has been established by Knoebel [I] and Mitchelmore [2] in their treatments of iterated exponentials.  

Knoebel introduces the notation 
n
x for these 'hyperpowers' where x, x

x
, xx

x .
, . . are written

1
x,

2
x, 

3
x . . . and y in the 

example above would be the limit of the sequence y = lim 
n
x. as n approaches infinity. He then proves that the 

sequence {
n
x} converges only in the interval  

e
-e

 < x < e
1/e

 

The members of this sequence of hyperpowers offer an interesting study in critical points and calculus teachers 

seeking computer-oriented problems which would challenge their brighter students may find the sequence useful. 

This is an attempt to organize the tools to help a teacher present this sequence {
n
x}. 

 

Comparison of the three sequences  

Just as the computer has greatly facilitated the computation of the derivatives to study these three sequences, so 

also the computer can be used to check the values in the interval and outside. So if x = 2 this is in the interval 

repeated exponentiation and will give the answer y = 2
1/2

. But for x = 3 we get y = 2.4780 and not 3
1/3

. This veri-

fies an earlier claim. In fact for a value close to zero, for example, x = .01 we find that for after a large number of 

exponentiations  

O
(.01) = 0.0130925 and 

E
(.01) = .9414883.  

Also (.01)
.9414883

 = .0l30925 and (.01)
.0130925

 = .9414883. 

 

This illustrates that the sequence {
n
.01 } is diverging (by oscillation) but the two subsequences {

O
(.01)} and 

{
E
(.01)} are converging to two distinct limits .0130925 and .9414883. 

 

Points on the graphs of certain hyperpowers using values of n = 1, 2, 3, 4, . . . O, E, 

O, E, . . . in the interval (0,1). The sequence of functions {
n
x} converges as n-> only 

in the interval [e
-e

, e
1/e

] where e
-1

 < y < e. At the bifurcation point *(e
-e

, e
-1

) the 

sequence {
n
x} divides into two (green) odd {

O
x} and (red) even{

E
x} sequences each 

of which converges in the interval (0, e
-e

)  
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4.3. Some tetration identities 

 http://tetration.itgo.com/ident.html  

Integer Values of Tetration 

•  
−2

x = ±∞            

•  
−1

x = 0            

•  
0
x = 1            

•  
1
x = x            

•  
2
x = x

x
            

•  
∞
x = −W(−log(z)) / log(z)           in terms of the product-logarithm, the Lambert-W function.  

•  
−∞

x = 
∞
x           is a different branch of the infinite iterated exponential.  

 

Integer Values of Iterated Exponentiation 

•  
−n

x
a
 = log

n
x(a)            

•  
−2

x
a
 = logx(logx(a))            

•  
−1

x
a
 = logx(a)            

•  
0
x

a
 = a            

•  
1
x

a
 = x

a
            

•  
2
x

a
 = x^x^a           the graph of which made this website's logo  

•  
n
x

a
 = exp

n
x(a)            

•  
∞
x

a
 = 

∞
x           in terms of the infinite iterated exponential.  

•  
−∞

x
a
 = 

∞
x           is a different branch of the infinite iterated exponential.  

 

The Infinite Iterated Exponential and Company 

This table shows an interesting relationship: that these functions are so similar, they can all be expressed in terms 

of each other.  

         • ∞x   = −W(−log(z)) / log(z)           = 1 / srt2(1 / x)          the infinite iterated exponential  
         • ∞(e

−x
)x   = W(x)   = x / srt2(e

x
)          the product-logarithm  

         • 1 / 
∞
(1 / x)           = log(z) / W(log(z))   = srt2(x)          the square super-root  

 

About the Graphs 

 
y
e

a
 for y in { 1, ¾, ½, ¼, 0, -¼, -½, -¾, -1 }  
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5. References 

From my project for this article: 

 

SumLikePow Summing of like powers  

http://go.helms-net.de/math/binomial_new/04_3_SummingOfLikePowers.pdf 

PowTowCrit Critical point for this method of summation at s=exp(-1) 

http://go.helms-net.de/math/binomial_new/PowertowerproblemDocSummation.htm  

 
 

 

[Project-Index] http://go.helms-net.de/math/binomial_new/index 

[Intro] http://go.helms-net.de/math/binomial_new/00_0_Intro.pdf 

[List] http://go.helms-net.de/math/binomial_new/00_1_ListOfMatrices.pdf  

 

[binomialmatrix] http://go.helms-net.de/math/binomial_new/01_1_binomialmatrix.pdf 

[signed binomial] http://go.helms-net.de/math/binomial_new/01_2_signedbinomialmatrix.pdf 

[Stirlingmatrix] http://go.helms-net.de/math/binomial_new/01_3_stirling.pdf  

[Gaussmatrix] http://go.helms-net.de/math/binomial_new/01_5_gaussmatrix.pdf  

 

[GenBernRec] (Generalized Bernoulli-recursion)  

http://go.helms-net.de/math/binomial_new/02_2_GeneralizedBernoulliRecursion.pdf  

 

[SumLikePow] (Sums of like powers)  

http://go.helms-net.de/math/binomial_new/04_3_SummingOfLikePowers.pdf 

 

[Hasse] http://go.helms-net.de/math/binomial_new/10_2_recihasse.pdf 

[Vandermonde] http://go.helms-net.de/math/binomial_new/10_3_InverseVandermonde1.pdf   

 

Projekt Bernoulli-numbers, first versions of the above, contain a first rough exploratory course but already cover most 

central topics and contain also the basic material about Gp and Gm which is still missing in the above 

list: 

[Bernoulli] http://go.helms-net.de/math/binomial_new/bernoulli_en.pdf 

[Summation] http://go.helms-net.de/math/binomial_new/pmatrix.pdf 
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