Identities involving binomial-coefficients, Bernoulli- and Stirlingnumbers

Gottfried Helms - Univ Kassel 12 - 2006

Intro & Notation

Abstract: an overview about the concept of this collection of articles is given as well as notational conventions.

Contents:

1. Int	roduction	2
1.1.	notational conventions	2
1.2.	Examples for operating with vectors and matrices	4
2. Re	ferences	6

1. Introduction

In this collection of articles I present some known identities about binomial-coefficients, Bernoulli-, Stirlingnumbers (and some other), as well as some heuristics about compositions of that numbers in context with geometric series (powerseries), harmonic- and more general: zeta-series.

I present the results in terms of a "toolbox" of matrices and vectors of infinite dimension.

Most of the matrices are of lower triangular shape, so that the common matrix-operations like addition, right-multiplication and inversion, even finding of Eigensystems etc are based on finite operations. Convergence/divergence is then an issue when leftmultiplication is applied and/or infinite square-matrices like the Vandermondematrix ZV are used - such situations must be considered specifically.

Thus a chapter about divergent summation (for instance Cesaro and Eulersummation) is appended where the matrix-representation can express some of the common techniques in a very concise and instructive manner. Some selected results of divergent sums are already included, which exhibit some much interesting relations, for instance the sums of bernoulli-numbers and some variants of that.

Expressing relations in terms of matrix-products is a rich source of identities, which are usually expressed as identities of sums of products of coefficients (like the "sum of products of binomial-coefficients and bernoulli-numbers"), since a matrix-product of infinite dimensioned matrices gives infinitely many such sums for each column (and each row) of the result-vector/matrix in one shot.

Over this collection of articles I'll often save the effort to express such relations in the conventional summation-notation; they may be simply reproduced; in some cases however, where the expressions are very common or special interesting, I'll write them out for convenience of the reader.

1.1. notational conventions

The *toolbox* contains the following vectors and matrices, with the following conventions:

- 1. all matrices and vectors are understood as of infinite dimension
- 2. vectors are primarily assumed as column-vector
- 3. the transpose-symbol "~" is used (as in the openly available number-theoretic program Pari/GP) for convenient translation of the formulae into the programming language, and to prevent confusion with the apostroph for the derivative, which shall also be used in some chapters.
- 4. the indices r,c for rows and columns are always assumed as beginning at zero
- 5. the superscript prefix d is added, if a vector is assumed as the coefficients of a diagonal matrix. With very common diagonal matrices (I,J,F) and where the context is clear/ should be clear by the requirments of matrix dimension in multiplications, I often leave this symbol for brevity of the formula.
- 6. the elementwise-product of two matrices ("Hadamard"- multiplication) is denoted by "\$\overline{C}":

 $A \stackrel{\text{tr}}{\hookrightarrow} B = C$

If mixed operations like elementwise multiplication and division in a formula I'll append the appropriate standardoperator:

$A \stackrel{{}_{\leftrightarrow}}{\Rightarrow} * B \stackrel{{}_{\leftrightarrow}}{\Rightarrow} # C = D$

7. matrices are generally assumed as lower triangular matrices (few exceptions)

1.1.1. <u>Vectors</u>

Basic vectors are

Powerseries	$V(x) = [1, x, x^2, x^3,] \sim$
harmonic/Zeta-like series	$Z(s) = [1, 1/2^{s}, 1/3^{s}, 1/4^{s}, \dots] \sim$
Summing vector	$E = V(1) = Z(0) = [1, 1, 1, 1,] \sim$
Factorials	$Fac(s) = [1, 1, 2!^{s}, 3!^{s}, 4!^{s},] \sim$
in some chapters I use or	nly F and F^{-1} for the diagonal matrix $Fac(1)$ and $Fac(-1)$
Bernoulli-numbers	$B = [\beta_0, \beta_1, \beta_2,]$ where β_k are the k'th bernoulli-numbers
Bernoulli-numbers	$B_+ = [\beta_0, \beta_1, \beta_2,]$ where $\beta_1 = +1/2$

I also use for convenience J and I for the vectors resp diagonal matrices

Identity-matrix	I = diag(1, 1, 1, 1,)
alt.Identity	$J = {}^{d}V(-1) = diag([1, -1, 1,])$

1.1.2. Matrices

Basic lower-triangular matrices of number-theoretic coefficients are the following (more detailed description in the resp. chapter):

	$P := P_{r,c} = binomial(r,c) if r > = c$ $P_j := P * J := P_j r_{r,c} = (-1)^c * binomial(r,c)$ $_jP := J * P := _jP_{r,c} = (-1)^r * binomial(r,c)$	if r >= c if r >= c					
matrices represe	nting the Bernoulli-polynomials $BY:=BY_{r,c} = \beta_{r,c} * binomial(r,c)$ $BY_m := BY, using the standard setting \beta_1 = -1/2BY_p := similar to BY, only using \beta_1 = +1/2$	ifr > = c					
G-matrices	$G := G_{r,c} = \beta_{r-c} * binomial(r,c) / (c+1)$ $G_m := G, using the standard setting \beta_1 = -1/2$ $G_p := similar to G, only using \beta_1 = +1/2$	<i>if r>=c</i>					
Stirling-matrices							
1'st kind	$St1:=St1_{r,c}=stirling_kind1_{r,c}$	<i>if</i> $r > = c$					
2'nd kind	$St2:= St2_{r,c} = stirling_kind2_{r,c}$	if $r > = c$					
the Vandermondematrix ZV as column-concatenation of Z-vectors $Z(0), Z(-1), Z(-2),$ $ZV := ZV_{r,c} = (r+1)^c$							
a Toeplitzmatrix Toeplitz(x) is by common definition a square-matrix $T = \frac{1}{2} \left(\frac{1}{2} \right)^{\frac{1}{2}}$							
Toeplitz(x) = Toeplitz(x)[r,c] = x^{r-c} Here it occurs most often in a hadamard-product with a triangular matrix, for instance with PToeplitz(x) = Toeplitz(x)[r,c] = x^{r-c} if $r > = c$							

1.1.3. Other shorthands

For the here most common binomial-coefficient binomial(r,c) I use for brevity

bi(r,c) := binomial(r,c)	
ch(r,c) := binomial(r,c)	// I'll delete this abbreviation while rewriting the articles

Intro

1.2. Examples for operating with vectors and matrices

Summing a powerseries:

$$E \sim *V(1/x) = V(1) \sim *V(1/x) = \sum_{r=0..inf} (1/x^r) = 1/(1 - 1/x) = x/(x - 1)$$

$$V(1) \sim * V(1/x) = \sum_{r=0..inf} (1*1/x^{r}) = x/(x-1) \begin{bmatrix} 1 \\ 1/x \\ 1/x^{2} \\ 1/x^{3} \\ 1/x^{4} \\ 1/x^{5} \end{bmatrix}$$

Simple sign-inversion:

Using P and V(x) means to apply the binomial-rules:

$$P * V(x) = V(1+x)$$

$$\Sigma_{c=0..r} binomial(r,c) * x^{c} = (1+x)^{r}$$

$$\begin{bmatrix} 1 & . & . & . & . \\ 1 & 1 & . & . & . & . \\ 1 & 1 & . & . & . & . \\ 1 & 3 & 3 & 1 & . & . \\ 1 & 4 & 6 & 4 & 1 & . \\ 1 & 5 & 10 & 10 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 9 \\ 27 \\ 81 \\ 243 \end{bmatrix}$$

Use of column-signed Pascalmatrix P_i

1 2 4 8 16 $P_j * V(x) = V(1-x)$ $\Sigma_{c=0..r} (-1)^{c} binomial(r,c)^{*}x^{c} = (1-x)^{r}$ 32 1 -1 1 -2 1 -3 1 3 1 - 1 -1 6 1 -4 10 - 10 1 - 5 5

Example eigenvector-relations:

 $P_j * V(1/2) = V(1/2)$ saying V(1/2) is an eigenvector of P_j 1/2 1/4 $\Sigma_{c=0..r} (-1)^c binomial(r,c) * 1/2^c = 1/2^r$ 1/8 1/16 1/32 1 -1 1 -2 1 -3 1 -4 1/2 . 1 3 1/4 - 1 1/8 6 -4 1/16 1 10 1 - 5 - 10 5 1/32

Powers of matrices:

Summation of powerseries (includes to handle also their derivatives)

$lim_{r->oo} (1/2*V(1/2) \sim *P) = V(1) \sim$										1 3		C
								1	5	6 10	10	5
[1/2	1/4	1/8	1/16	1/32	1/64]	[lim	r-≻00=	1	1	1	1	1

a slightly more general expression of power-series-summation:

$\lim_{r \to oo} (1/x * V(1/x) \sim * P^{x \cdot 1}) = V(1) \sim $ $4 4 1 2$ $8 12 6 1$ $16 32 24 8 1$	$\lim_{r\to oo} (1/x * V(1/x) \sim * P^{x-1}) = V(1) \sim$							1 2 4	1 4	P	~	2	
16 32 24 8 1									8	12	6	1	
									16	32	24	8	1
32 80 80 40 10									32	80	80	40	10
	F												-7
[1/3 1/9 1/27 1/81 1/243 1/729] [lim r-≻oo= 1 1 1 1 1]	_ 1/3	1/9	1/27	1/81	1/243	1/729	lim	r-≻00=	1	1	1	1	1

2. References

[Project-Index] <u>http://go.helms-net.de/math/binomial/index</u>									
[Intro/Notation]		http://go.helms-net.de/math/binomial/00_0_intro.pdf							
[ListOfMatrices]		http://go.helms-net.de/math/binomial/00 1 ListOfMatrices.pdf							
[binomialmatrix]		http://go.helms-net.de/math/binomial/01 1 binomialmatrix.pdf							
[signed binomial]		http://go.helms-net.de/math/binomial/01_2_signedbinomialmatrix.pdf							
[Stirlingmatrix]		http://go.helms-net.de/math/binomial/01_3_stirlingmatrix.pdf							
[Gaussmatrix]		http://go.helms-net.de/math/binomial/01_5_gaussmatrix.pdf							
[GenBernRec] [SumLikePow]		(Generalized Bernoulli-recursion) http://go.helms-net.de/math/binomial/02_1_GeneralizedBernoulliRecursion.pdf (Sums of like powers) http://go.helms-net.de/math/binomial/04_3_SummingOfLikePowers.pdf							
[Erdoes]		http://go.helms-net.de/math/binomial/10_1_erdoes.pdf							
[Hasse]		http://go.helms-net.de/math/binomial/10_2_recihasse.pdf							
[InvVandermonde]		http://go.helms-net.de/math/binomial/10_3_InverseVandermonde.pdf							
Projekt <i>Bernoulli-numbers</i> , first versions of the above, contain a <i>first rough exploratory</i> course but are alread cover most topics and contain also the basic material about G_p and G_m which is still missing the above list:									
[Bernoulli]		http://go.helms-net.de/math/binomial/bernoulli_en.pdf							
[Summation	ı]	http://go.helms-net.de/math/binomial/pmatrix.pdf							
[Matexp]	[Matexp] Matrixexponential Alan Edelman & Gilbert Strang, MIT <u>http://web.mit.edu/18.06/www/pascal-work.pdf</u>								
[Laguerre]	e] Laguerrematrix http://mathworld.wolfram.com/LaguerrePolynomial.html								
		nials From Pascal's Triangle" Mathforum at Drexel <u>thpages.com/home/kmath304.htm</u>							
[Toeplitzmatrix]		matrices Wikipedia wikipedia.org/wiki/Toeplitz_matrix							

Gottfried Helms, first version 13.12.2006

Identities with binomials, Bernoulli and other numbertheoretical number