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10-1 Does for any r and n hold: Σ k=1..n k
r
 = (n+1)

r
 

an Erdös-problem 
 

Abstract: For this problem no solution is known. Here I present an approach, which 

gives a stong hint for the impossibility of the identity, and possibly by further analysis 

from here proof may be derived 
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1. Definitions/ Identities 

1.1. Representation for the sum 

Sums of like powers were considered by Jakob Bernoulli, who found the coefficients ß (later named 

after him), with which such sums can be expressed as polynomials. 
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The coefficients that Jakob Bernoulli found, can be represented in a matrix Gp, and the summation can 

then be expressed as a matrixmultiplication  

 Gp * n V(n) = V(1)+V(2)+...+V(n) 

Example 

(1.1.1.) Gp * n V(n)  = SU(n) 

*  

 =    =  

 

where the sum for the exponent r is in the r'th row of the result. 
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1.2. Representation for the r'th power of n+1 

On the other hand, the binomial-matrix P, rightmultiplied with a vector V(n) transforms this vector into 

V(n+1):  

Example 

(1.2.1.) P * V(n) = V(n+1) 

*  

 =  

 

 

1.3. Representation of the Erdös-Problem 

The Erdös-problem, for any power r can be written as the question, whether in the differencevector D: 

  Gp * n V(n)  - P V(n) =  D 

in any row r a zero can occur for any n. 

Example 

(1.3.1.)  *  

*  -  *  =  

Result Result Result 

 -  =  

 

In no row in D is a difference dr = 0, but the nature of the entries is not clear in simpler description than 

that from one row r the entries are increasing negative, and an expected zero need to occur in an early 

row.  

To see an example, I use the matrix ZV as complete set of powerseries of V(1) to V(n), and the matrix 

nZV as complete set of powerseries 1*V(1) to n*V(n):  
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Example: 

  

 

Using such a complete matrix instead of single powerseries vectors V(n) and n*V(n) also the result is a 

complete set of D-vectors, call it DV; and we have 

  Gp *  nZV - P * ZV = DV  

Example 

  

 

and the difference DV: 

(1.3.2.)  

 

 

Now the question is: does a zero occur in DV other than in the top left 2x2-matrix? 

 

 

  Gp *  ZV*  dZ(-1) - P * ZV = DV  

  Gp *  ZV*  dZ(-1)*ZV
-1

 - P         = DV * ZV
-1

 =  M 

M is nearly triangular: 

Example: 

(1.3.3.)  

 

 and we can ask 

 does a zero in a row/column of D occur by the following matrix-multiplication for r,c>2: 

  M * ZV = D  

The rows r of M give the coefficients for polynomials in x, fr(n) if postmultiplied by the powerseriesvec-

tor V(n); so this is equivalent to the question 

 does some positive integer n exist, so that the polynomial fr(n) , constructed by the coefficients of row r in 

M, is zero? 

Since M is not really triangular in this example, let for the following then row-index r for M begin at 1 

to have consistency with the polynomial order. 
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1.4. Definition of the coefficients in M 

 M=matrix(9,9,r,c,           if(c==1,-1,if(r>=c, -P[r-1,c] + Gp[r-1,c-1]))) 

 M=matrix(9,9,r,c,(r-1)!*if(c==1,-1,if(r>=c, -P[r-1,c] + Gp[r-1,c-1]))) 

 

1.5. Formal Irreducibility-approach 

The first approach would be to see and check, whether we can derive, that the roots of fr(n) are integer 

or not by application of criteria like the Eisentein-criterion for the first several rows in M / the accord-

ing polynomials fr(n). For this some rescalings may be useful, for instance to represent monic polyno-

mials: 

(1.5.1.) M =  

 

 

1.6. An approach using properties of observed real roots of the polynomials 

A table for real roots from k=1 to 63 are given in 

http://go.helms-net.de/math/divers/ZerosOfGpFunctions.htm  

 

 

1.7. Further investigations 

First we add a leading row, to get a triangular matrix 
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