## 10-1 Does for any $r$ and $n$ hold: $\Sigma_{k=1 . . n} k^{r}=(n+1)^{r}$ an Erdös-problem


#### Abstract

For this problem no solution is known. Here I present an approach, which gives a stong hint for the impossibility of the identity, and possibly by further analysis from here proof may be derived


Contents:

1. Definitions/ Identities
1.1. Representation for the sum
1.2. Representation for the r'th power of $n+1$
1.3. Representation of the Erdös-Problem
1.4. Definition of the coefficients in M
1.5. Formal Irreducibility-approach
1.6. An approach using properties of observed real roots of the polynomials
1.7. Further investigations

## 2. References

For an intro about the conventions of notation and naming of basic-matrices see [intro] http://go.helms-net.de/math/binomial/00_0_intro.pdf

## 1. Definitions/ Identities

### 1.1. Representation for the sum

Sums of like powers were considered by Jakob Bernoulli, who found the coefficients $\beta$ (later named after him), with which such sums can be expressed as polynomials.

$$
\sum_{k=1}^{n} k^{r}=\sum_{j=0}^{r} \frac{\beta_{r-j}}{j+1}\binom{r}{j} n^{r+l} \quad / / \text { where } \beta_{l}=+1 / 2
$$

Example:

$$
\begin{aligned}
1+2^{4}+3^{4}+4^{4}+5^{4} & =5 *\left(\frac{\beta_{4}}{1} 1+\frac{\beta_{3}}{2} 4 * 5+\frac{\beta_{2}}{3} 6 * 5^{2}+\frac{\beta_{1}}{4} 4 * 5^{3}+\frac{\beta_{0}}{5} 1 * 5^{4}\right) \\
& =5 *\left(-\frac{1}{30} 1+\frac{0}{2} 4 * 5+\frac{1}{3 * 6} 6 * 5^{2}+\frac{1}{8} 4 * 5^{3}+\frac{1}{5} 1 * 5^{4}\right) \\
& =5 *\left(-\frac{1}{30}+\frac{1}{3} * 5^{2}+\frac{1}{2} * 5^{3}+\frac{1}{5} * 5^{4}\right) \\
& =\left(-\frac{1}{6}+\frac{1}{3} 5^{3}+\frac{3}{2} 5^{4}\right)=\frac{1}{6}(-1+125(2+9 * 5)) \\
979 & =\frac{1}{6}(-1+125 * 47)=\frac{1}{6}(-48+126 * 47)=-8+21 * 47=979
\end{aligned}
$$

The coefficients that Jakob Bernoulli found, can be represented in a matrix $\boldsymbol{G}_{\boldsymbol{p}}$, and the summation can then be expressed as a matrixmultiplication

$$
G_{p} * n V(n)=V(1)+V(2)+\ldots+V(n)
$$

Example
(1.1.1.) $\quad G p * n V(n)=S U(n)$

where the sum for the exponent $r$ is in the $r^{\prime}$ th row of the result.

### 1.2. Representation for the r'th power of $n+1$

On the other hand, the binomial-matrix $\boldsymbol{P}$, rightmultiplied with a vector $\boldsymbol{V}(n)$ transforms this vector into $V(n+1)$ :

Example
(1.2.1.) $\quad P * V(n)=V(n+1)$

* $\left[\begin{array}{r}1 \\ 5 \\ 25 \\ 125 \\ 625 \\ 3125\end{array}\right]$
$\left[\begin{array}{rrrrrr}1 & . & . & . & . & . \\ 1 & 1 & . & . & . \\ 1 & 2 & 1 & . & . & . \\ 1 & 3 & 3 & 1 & . & . \\ 1 & 4 & 6 & 4 & 1 & . \\ 1 & 5 & 10 & 10 & 5 & i\end{array}\right]=\left[\begin{array}{r}1 \\ 6 \\ 36 \\ 216 \\ 1296 \\ 7776\end{array}\right]$


### 1.3. Representation of the Erdös-Problem

The Erdös-problem, for any power $r$ can be written as the question, whether in the differencevector $\boldsymbol{D}$ :

$$
G_{p} * n V(n)-P V(n)=D
$$

in any row $r$ a zero can occur for any $n$.
Example
(1.3.1.)



Result



Result


In no row in $\boldsymbol{D}$ is a difference $d_{r}=0$, but the nature of the entries is not clear in simpler description than that from one row $r$ the entries are increasing negative, and an expected zero need to occur in an early row.

To see an example, I use the matrix $\boldsymbol{Z} \boldsymbol{V}$ as complete set of powerseries of $\boldsymbol{V}(1)$ to $\boldsymbol{V}(n)$, and the matrix ${ }_{n} \boldsymbol{Z} \boldsymbol{V}$ as complete set of powerseries $1 * \boldsymbol{V}(1)$ to $n * \boldsymbol{V}(n)$ :

## Example:

$\left[\begin{array}{rrrrrr}1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 4 & 9 & 16 & 25 & 36 \\ 1 & 8 & 27 & 64 & 125 & 216 \\ 1 & 16 & 81 & 256 & 625 & 1296 \\ 1 & 32 & 243 & 1024 & 3125 & 7776 \\ 1 & 64 & 729 & 4096 & 15625 & 46656\end{array}\right]$
$\left[\begin{array}{rrrrrr}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 4 & 9 & 16 & 25 & 36 \\ 1 & 8 & 27 & 64 & 125 & 216 \\ 1 & 16 & 81 & 256 & 625 & 1296 \\ 1 & 32 & 243 & 1024 & 3125 & 7776\end{array}\right]$

Using such a complete matrix instead of single powerseries vectors $\boldsymbol{V}(n)$ and $n * \boldsymbol{V}(n)$ also the result is a complete set of $\boldsymbol{D}$-vectors, call it $\boldsymbol{D} \boldsymbol{V}$; and we have

$$
G_{p} * n Z V-P * Z V=D V
$$

Example

$$
\left[\begin{array}{rrrrrr}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 3 & 6 & 10 & 15 & 21 \\
1 & 5 & 14 & 30 & 55 & 91 \\
1 & 9 & 36 & 100 & 225 & 441 \\
1 & 17 & 98 & 354 & 979 & 2275 \\
1 & 33 & 276 & 1300 & 4425 & 12201
\end{array}\right]
$$

$\left[\begin{array}{rrrrrr}1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 9 & 16 & 25 & 36 & 49 \\ 8 & 27 & 64 & 125 & 216 & 343 \\ 16 & 81 & 256 & 625 & 1296 & 2401 \\ 32 & 243 & 1024 & 3125 & 7776 & 16807\end{array}\right]$
and the difference $\boldsymbol{D} \boldsymbol{V}$ :
$\left[\begin{array}{rrrrrr}0 & 1 & 2 & 3 & 4 & 5 \\ -1 & 0 & 2 & 5 & 9 & 14 \\ -3 & -4 & -2 & 5 & 19 & 42 \\ -7 & -18 & -28 & -25 & 9 & 98 \\ -15 & -64 & -158 & -271 & -317 & -126 \\ -31 & -210 & -748 & -1825 & -3351 & -4606\end{array}\right]$

Now the question is: does a zero occur in $\boldsymbol{D} \boldsymbol{V}$ other than in the top left $2 x 2$-matrix?

$$
\begin{aligned}
& G p * Z V^{*} d Z(-1)-P * Z V=D V \\
& G p * Z V^{*} d Z(-1) * Z V^{-1}-P \quad=D V * Z V^{-1}=M
\end{aligned}
$$

$\boldsymbol{M}$ is nearly triangular:
Example:
(1.3.3.)

$$
\left[\begin{array}{rrrrrr}
-1 & 1 & 0 & 0 & 0 & 0 \\
-2 & -1 & 1 & 0 & 0 & 0 \\
-6 & -11 & -3 & 2 & 0 & 0 \\
-24 & -72 & -66 & -12 & 6 & 0 \\
-120 & -484 & -720 & -440 & -60 & 24 \\
-720 & -3600 & -7260 & -7200 & -3300 & -360
\end{array}\right]
$$

and we can ask
does a zero in a row/column of $D$ occur by the following matrix-multiplication for $r, c>2$ :

$$
M * Z V=D
$$

The rows $r$ of $\boldsymbol{M}$ give the coefficients for polynomials in $x, f_{r}(n)$ if postmultiplied by the powerseriesvector $\boldsymbol{V}(n)$; so this is equivalent to the question
does some positive integer $n$ exist, so that the polynomial $f_{r}(n)$, constructed by the coefficients of row $r$ in $M$, is zero?

Since $\boldsymbol{M}$ is not really triangular in this example, let for the following then row-index $r$ for $\boldsymbol{M}$ begin at 1 to have consistency with the polynomial order.

### 1.4. Definition of the coefficients in $M$

```
M=matrix(9,9,r,c, if(c==1,-1,if(r>=c,-P[r-1,c]+Gp[r-1,c-1])))
M=matrix(9,9,r,c,(r-1)!*if(c==1,-1,if(r>=c,-P[r-1,c] + Gp[r-1,c-1])))
```


### 1.5. Formal Irreducibility-approach

The first approach would be to see and check, whether we can derive, that the roots of $\mathrm{fr}(\mathrm{n})$ are integer or not by application of criteria like the Eisentein-criterion for the first several rows in $\mathrm{M} /$ the according polynomials $\mathrm{fr}(\mathrm{n})$. For this some rescalings may be useful, for instance to represent monic polynomials:
(1.5.1.) $\quad M=$
$\left[\begin{array}{rrrrrr}-1 & 1 & 0 & 0 & 0 & 0 \\ -2 & -1 & 1 & 0 & 0 & 0 \\ -3 & -11 / 2 & -3 / 2 & 1 & 0 & 0 \\ -4 & -12 & -11 & -2 & 1 & 0 \\ -5 & -121 / 6 & -30 & -55 / 3 & -5 / 2 & 1 \\ -6 & -30 & -121 / 2 & -60 & -55 / 2 & -3\end{array}\right]$

### 1.6. An approach using properties of observed real roots of the polynomials

A table for real roots from $k=1$ to 63 are given in
http://go.helms-net.de/math/divers/ZerosOfGpFunctions.htm

### 1.7. Further investigations

First we add a leading row, to get a triangular matrix



## 2. References

[Project-Index] http://go.helms-net.de/math/binomial/index

| [Intro] | http://go.helms-net.de/math/binomial/intro.pdf |
| :--- | :--- |
| [binomialmatrix] | http://go.helms-net.de/math/binomial/01_1_binomialmatrix.pdf |
| [signed binomial] | http://go.helms-net.de/math/binomial/01_2_signedbinomialmatrix.pdf |
| [Gaussmatrix] | http://go.helms-net.de/math/binomial/04_1_gaussmatrix.pdf |
| [Stirlingmatrix] | http://go.helms-net.de/math/binomial/05_1_stirlingmatrix.pdf |

[Hasse] http://go.helms-net.de/math/binomial/01_x_recihasse.pdf
[A066325] http://www.research.att.com/~njas/sequences/A066325

## Gottfried Helms

