Cycles in the Collatz-problem

(minor edits 2012-08-11
First version: 10'2004)
Abstract: The possibility of occurence of cycles in the Collatz-problem is discussed. Here I use my approach to the collatz-problem with the means of an exponential diophantine expression. Although I don't arrive at a proof or disproof of cycles I find some strong arguments on a path of rational approximation, which also shows a connection to an unsolved aspect in the Waring-problem. My discussion is based on the consideration of a compressed version of the Collatz-transformation, which reduces to the consideration of odd numbers only.

The approach here can easily be extended to connected cycles, analoguously to that of mcycles in [Steiner] and [de Weger], though I didn't append that formulas yet. This will be continued in the next days/weeks.

Contents:
CYCLES IN THE COLLATZ-PROBLEM 1

1. Notation/Basic Definitions 2
1.1. The forward-transformation $\mathrm{T}(0$ 2
1.2. The backward-transformation C() 2
1.3. Restrictions on the parameters of $\mathrm{T}(\mathrm{a} ; \mathrm{A}, \mathrm{B}, \ldots, \mathrm{H})$ 3
1.4. Reformulation of the Collatz-conjecture in terms of T() 3
1.5. A "canonical" form 4
1.6. A view into transformation T() as a bitstring-operation 4
2. Looking at exponents, elements \mathbf{a}, b kept indeterminate: simple observations 5
2.1. multitude of solutions according to one residue class $\left(\bmod 2^{5}\right)$ 5
2.2. the construction of a "glide" (Oliveira,Lagarias) of arbitrary length 6
2.3. An exhaustive separation of the integers into infinitely many classes 6
3. The cycle-problem: the general cycle 8
3.1. Overview; sufficient modular argument not yet found 8
3.2. Approximation arguments 9
3.3. Example: disproof of the general-cycle of 2 steps length 9
3.4. Example: disproof of the general cycle of 3 steps length 10
3.5. Generalization, the critical inequality for general cycles 12
3.6. Lower bounds for N , given a minimal member a of a cycle. 13
3.7. A loose end here 15
4. The primitive cycle ("1-cycle" [Simons/deWeger], "circuit" [Steiner]) 16
4.1. Definitions 16
4.2. A short analysis of the approximation using a table of irregular fractions 19
4.3. Concatenated m-peak-cycles -> general cycle 22
4.4. Some loose ends 22
5. Appendix 23
5.1. Approximation table for the $(3 x+1) / 2$-problem 23
5.2. Residual tables for other problem-parameters 26
5.3. Paraphrase of the Steiner-proof of 1977 28

1. Notation/Basic Definitions

1.1. The forward-transformation $T()$

In the following I rewrite the Collatz-statement in a compressed form. Instead of
1.1.1. Collatz $(a) \rightarrow b \quad:=\quad b=\left\{\begin{array}{cl}3 a+1 & \text { if } a \text { is } \text { odd } \\ \frac{a}{2} & \text { if a is even }\end{array}\right.$

I write in all the following:

```
1.1.2. forward-transformation:
\[
T(a ; A) \rightarrow b \quad:=\quad b=\frac{3 a+1}{2^{A}} \quad a, b>0, a \text { and } b \text { are odd }, A>0 \text { is integer }
\]
```

such, that A is the highest exponent of 2 , keeping the condition a and b are odd integers.
The use of the parameter A may seem to be of no use, since it is completely determined by the value of a. But this notation allows then to discuss a structure of an iterated transformation using a as an unknown variable by means of its exponents only.

```
1.1.3. In any equation for members of an iterated transformation only positive odd integers are
    assumed.
```

An iterated forward transformation is then written as:

$$
\begin{aligned}
& \text { 1.1.4. } T(a ; A, B):=T(T(a ; A) ; B)=\frac{\frac{3 a+1}{2^{A}} * 3+1}{2^{B}} \text { of any finite number of parameters } \\
& A, B, \ldots
\end{aligned}
$$

1.2. The backward-transformation $C()$

The use of exponential parameters allows then to discuss the reverse operation with the same notational scheme:
1.2.1. $C(b ; A) \rightarrow a:=\quad a=\frac{b^{* 2^{A}-1}}{3} \quad a, b>0$, a and b are odd
and
1.2.2 backward-transformation:

$$
C(b ; B, A) \rightarrow a \quad:=\quad a=\frac{\frac{b^{* 2^{A}-1}}{3} * 2^{B}-1}{3} a, b>0, \text { a and } \text { b are odd }
$$

where now the exponential parameters A and B are free parameters even if b is given (though with some modular restrictions).

1.3. Restrictions on the parameters of $T(a ; A, B, \ldots, H)$

The exponents A, B, \ldots are restricted by the Collatz-definition and its domain to
1.3.1. $1<=A, B, C, \ldots$
(but note, that this restriction can easily be omitted, when generalizing the problem into different characteritics like allowing negative numbers or different iteration formulae) and $T()$ has then the basic characteristic:
1.3.2. for an exponent $\mathrm{A}=1$ the $T()$-transformation is ascendent
1.3.3. for all exponents $\mathrm{A}>1$ the $T()$-transformation is descendent, except if $\mathrm{a}=1$ and $\mathrm{A}=2$, where it cycles ${ }^{1}$.

1.4. Reformulation of the Collatz-conjecture in terms of $T()$

With this notation the Collatz-conjecture for $T()$ is
1.4.1 \quad For all positive odd integers a there exists a finite set of exponents $A, B, C, \ldots Z$ such that $T(a ; A, B, C, \ldots Z)=1$
and conversely for the backward $C()$-transformation :
1.4.2. \quad all a of the domain can be computed by the inverse transformation $C()$ with a finite set of exponents $A, B, \ldots Z$ starting from $a=1$
$C(1 ; A, B, C, \ldots Z)=a$
meaning: each odd integer is constructable by an appropriate set of exponents starting from 1 using the iterated $C()$-transformation.

[^0]
1.5. A "canonical" form

An iterated transformation

$$
b=T(a ; A, B, C, D \ldots H)
$$

with N terms and the sum

$$
S=A+B+C+\ldots+H
$$

can explicitely be written as:
1.5.1. $T(a ; A, B, C, D, . ., H)=\frac{3^{N}}{2^{S}} a+\frac{3^{N-1}+3^{N-2} 2^{A}+3^{N-3} 2^{A+B}+\ldots+3^{1} 2^{A+B+\ldots+F}+2^{A+B+\ldots+G}}{2^{S}}$
or
1.5.2. $T\left(a ; A_{1}, A_{2}, A_{3}, A_{4}, \ldots, A_{N}\right)=\frac{3^{N}}{2^{S}} a+\frac{\sum_{k=1}^{N} 3^{N-k} * 2^{\sum_{j=0}^{k-1} A_{j}}}{2^{S}} \quad$ setting $A_{0}=0$

We could call this a "canonical" form, where the most right term is indepedent of the variable a is then
1.5.3. \quad canonical form of T ()

$$
T(a ; A, B, C, D, \ldots, H)=\frac{3^{N}}{2^{s}} a+T(0 ; A, B, C, D, \ldots, H)
$$

and of the reverse transformation
1.5.4. canonical form of $C()$

$$
C(a ; H, \ldots, D, C, B, A)=\frac{2^{S}}{3^{N}} a+C(0 ; H, \ldots, D, C, B, A)
$$

and in (1.8) we see, that given a fixed set of exponents, infinitely many a 's can be transformed by this characteristic transformation $T(a ; \ldots)$ as far as they have the same residue $\left(\bmod 2^{5}\right)$.

1.6. A view into transformation $T()$ as a bitstring-operation

The transformation T() can be expressed by a very intriguing bitstring-notation. Since the members of a transformation we have for some a the bistring, say "11011001". Then the arithmetic goes

$a * 2$	$"$	$110110010^{\prime \prime}$
$+a$	$+"$	$11011001 "$
+1	$+"$	$1 "$
$=3 a+1$	$=" .1010001100^{\prime \prime}$	
2^{A}	$=$	$" 10100011 "$

and the question of arriving at 1 is, whether this mixing of digits and cutting of zeros leads to the bitstring "1".

2. Looking at exponents, elements a,b kept indeterminate: simple observations

2.1. multitude of solutions according to one residue class (mod 2^{5})

Eq. (1.8) says, that given a certain transformation, say:
2.1.1. $\quad b=T(a ; A, B, C, D) \quad$ where $N=4, S=A+B+C+D$
we can find a minimal solution $\left(a_{1}, b_{1}\right)$ in terms of a modular class of 2^{5} :
2.1.2. $\quad b_{1}=\frac{3^{N}}{2^{S}} a_{1}+T(0 ; A, B, C, D)$
where the canonical transformation $T(O ; A, B, C, D)$ is independent of a and defines a unique residue class modulo 2^{S}.

The next possible solution a_{2}, b_{2} in the domain is then the same residue-class:
2.1.3.

$$
b_{1}=\frac{3^{N}}{2^{S}} a_{1}+T(0 ; A, B, C, D)
$$

$$
b_{2}=\frac{3^{N}}{2^{S}} a_{2}+T(0 ; A, B, C, D) \quad \text { where } a_{2}=a_{1}+2 * 2^{S}
$$

and then:

2.1.4. | $b_{2}=b_{1}+2^{*} 3^{N}$ | $a_{2}=a_{1}+2^{*} 2^{S}$ | |
| :--- | :--- | :--- |
| | $b_{k}=b_{1}+2^{*}(k-1)^{*}$ | $a_{k}=a_{1}+2^{*}(k-1)^{*}$ |

Example ${ }^{1}$:

For instance, for the transformation $b=T(a ; 1,2,3,4)$ we find after a first solution (a_{1}, b_{1}) infinitely many variants (a_{k}, b_{k}) as

$$
\begin{array}{rll}
b=T(a ; 1,2,3,4) \quad \Rightarrow \quad & \left(a_{0} \rightarrow b_{0}\right)=(11 & \rightarrow 1) \\
& \left(a_{1} \rightarrow b_{1}\right)=(2059 & \rightarrow 163)
\end{array}
$$

2.1.5.

$$
\begin{gathered}
\left(a_{k} \rightarrow b_{k}\right)=\left(11+2^{10} * 2 k \quad \rightarrow 1+3^{4} * 2 k\right) \\
k=0 . . \inf
\end{gathered}
$$

The term k is needed with cofactor 2 , using $2^{*} k$, since the result b_{k} must be odd to fall into the domain of $T()$.

```
O
\\ An example of Pari/GP - code
\ ==============================================================================
\ finds (rational) TO from canonical al = T(O,[A,B,C,...])
TO (m=[l])= local(lae,a,v); \
            lae = matsize(m)[2];
            a = 0 ; for(k=1,lae, a = (3*a+1)/2^m[k]);
    return (a);
\ finds values a->b for b=T(a;[A,B,C,...])
\ if k==1, return this values, if k>1 return k'th next value
TFind_ab(v=[1],k=1) =local(t0,d,e,lae,w,a,b); \
        t0 = TO(v); d=denominator(t0); e=numerator(t0); lae=length(v); \
        w = - e / 3^lae % d; I
        a = w; if( T(a,v ) % 2 == 0 , a += d);
        b = (( a + 2*(k-1)* d) * 3^lae + e)/d; \
return([a,b])
```


2.2. the construction of a "glide" (Oliveira,Lagarias) of arbitrary length

With that tool we can construct transformations of arbitrary length, where all intermediate members of the transform are $a_{1}, a_{2}, a_{3}, \ldots a_{n}>a_{0}$, (called "glides" for instance in Lagarias): just select appropriate exponents.

A sequence of exponents e_{k} containing only 1 and 2 , which follows the rule, that in the product

$$
\frac{3}{2} * \frac{3}{4} * \frac{3}{2} * \frac{3}{4} * \frac{3}{2} * \frac{3}{4} * \frac{3}{4} * \frac{3}{2} * \frac{3}{4} * \frac{3}{2} * \frac{3}{4} * \frac{3}{4} * \ldots=\prod_{k=1}^{N} \frac{3}{2^{e_{k}}}=p_{N}
$$

all partial products $p_{k}>1$ can serve as glide-generator.
For each denominator 2 we choose an exponent 1 and for each denominator 4 an exponent 2:

$$
\begin{aligned}
& a_{n}=T\left(a_{0}, 1,2,1,2,1,2,2,1,2,1,2,2,1,2,1,2,1,2,2, \ldots\right) \quad \Rightarrow a_{k}>a_{0} \\
& \text { for all } k<=n
\end{aligned}
$$

which reflects also the convergents of the continued fraction of $\log (3) / \log (2)^{1}$.
Thus any length of a glide can be constructed simply by setting exponents, and the smallest pair (a, b) satisfying such a glide of a specific length can then be determined by solving the modulus-conditions. Note however, that allowing any exponent this does not say, whether there are glides of the same length with smaller pair of (a, b), so this method alone does not construct glide-records. I did not investigate this yet.

2.3. An exhaustive separation of the integers into infinitely many classes

Another curious observation is the following:
Using a segmentation of the set of positive integers into classes of the following form shows, that for each initial value of a a specific first exponent in the transformation is required and the result belongs to one of two residues classes (mod 6), though further analyses did not provide useful results. Note that the constant terms in structure reflect the two sequences

$$
\begin{aligned}
& S_{3}:\left(3,13,53, \ldots\left(10^{*} 4^{k}-1\right) / 3\right) \quad \text { and } \\
& S_{1}:\left(1,5,21, \ldots\left(4^{k}-1\right) / 3, \ldots\right)
\end{aligned}
$$

whose first $T()$-transforms are all 5 resp. all 1:

classnr	structure of a	exponent A	result	
0	$2 i$	-	-	not allowed
1	$4 i+3$	1	$6 i+5$	ascending
2	$8 i+1$	2	$6 i+1$	descending
3	$16 i+13$	3	$6 i+5$	descending
4	$32 i+5$	4	$6 i+1$	descending
5	$64 i+53$	5	$6 i+5$	descending
6	$128 i+21$	6	$6 i+1$	descending
\ldots	\ldots	\ldots	\ldots	

[^1]That the given segmentation into classes covers the whole set of positive integers can be shown by induction.

A table-view

The benefit of this table occurs, if we consider a certain number a, which may be described by a certain class:

Say, $a=32 i+5$, then $b=6 i+1$, which is smaller than a because of the common parameter i, and on the other hand, b must again have the structure of one of the classes. If it is, for instance, of class 1 , so $b=4 j+3$, then $j>i$, and c will be $c=6 j+5$ which is obviously $c>b$. If then c is of the class $128 k+21$ then d is $d=6 k+1$ and obviously smaller than c.

I evaluated such modular transformation-tables for more than one step, so involving (mod 18) instead of (mod 6) (considering 2-step-transformations) and (mod 54) (considering 3-step-transformations), but with not much new insight: for all possible combinations of transformations one seems to find possible candidates, and the Fermat-method of infinite descent, constructing a contradiction seems to not work on any level of complexity.

3. The cycle-problem: the general cycle

3.1. Overview; sufficient modular argument not yet found

For a general transformation, where "general" means here: no special restrictions for the exponents, we may write:
3.1.1. $b=T(a ; A, B, C, D, \ldots, H) \quad$ with N exponents and $S=s u m$ of exponents

For a general cycle b must equal a, this means
3.1.2. $\quad a=T(a ; A, B, C, D, \ldots, H)$

Using (1.8) this is
3.1.3.

$$
a=\frac{3^{N}}{2^{S}} a+T(0 ; A, B, C, D, \ldots, H)=\frac{3^{N}}{2^{S}} a+\frac{Q(0 ; A, B, C, D, \ldots, H)}{2^{S}}
$$

$$
a=\frac{Q(0 ; A, B, C, D, \ldots, H)}{2^{S}-3^{N}}=\frac{3^{N-1}+3^{N-2} 2^{A}+3^{N-3} 2^{A+B}+\ldots+3^{1} 2^{A+B+\ldots+F}+2^{A+B+\ldots+G}}{2^{S}-3^{N}}
$$

From this for a given set of exponents we'll find exactly one solution, which may or may not be in the allowed domain of positive odd integers (a might be negative and/or - in most cases - rational).

Note, that $A=B=C=\ldots=2$ gives $a=1$ and we have the "trivial" cycle:

$$
1=T(1 ; 2,2,2, \ldots, 2) \quad \text { for arbitrary many exponents }
$$

and allowing negative integers for a we have besides two known others:

$$
-1=T(-1 ; 1,1,1, \ldots, 1) \quad \text { for arbitrary many exponents }
$$

For all greater A with N occurences (N steps) we get rational soultions due to the formula

$$
\begin{aligned}
& a=T(a ; A, A, A, \ldots A)=a \frac{3^{N}}{2^{A N}}+\frac{\frac{3^{N}-2^{A N}}{3-2^{A}}}{2^{A N}} \\
& a\left(\frac{2^{A N}-3^{N}}{2^{A N}}\right)=\frac{3^{N}-2^{A N}}{\left(3-2^{A}\right) 2^{A N}}
\end{aligned}
$$

Finally

$$
a=\frac{1}{2^{A}-3} \leq 1
$$

Modular arguments against a general cycle based on this expression were not found yet, and variants of the collatz-problem, say the $5 x+1$ variant, having the same structure in their canonical expression, actually do have cycles in the allowed domain.

3.2. Approximation arguments

But the above formula can be investigated in terms of approximation, and some results, which exclude several small lengthes of general cycles are achievable already with this tool.

Let's write all intermediate steps of a hypothetical cycle $a=T(a ; A, B, C, D)$ as
3.2.1. $\quad b=T(a ; A), c=T(b ; B), d=T(c ; C), a=T(d ; D)$

Recall their meaning as one-step-transformations:
3.2.2. $\quad b=\frac{3 a+1}{2^{A}} c=\frac{3 b+1}{2^{B}} d=\frac{3 c+1}{2^{C}} a=\frac{3 d+1}{2^{D}}$

Multiply to build the trivial product:
3.2.3. $b c d a=\frac{3 a+1}{2^{A}} * \frac{3 b+1}{2^{B}} * \frac{3 c+1}{2^{C}} * \frac{3 d+1}{2^{D}}$

Rearrange the Ihs and the denominators
3.2.4. $\quad 2^{A+B+C+D}=\frac{3 a+1}{a} * \frac{3 b+1}{b} * \frac{3 c+1}{c} * \frac{3 d+1}{d}$
write $S=A+B+C+D$ and cancel:
3.2.5. $\quad 2^{S}=\left(3+\frac{1}{a}\right) *\left(3+\frac{1}{b}\right) *\left(3+\frac{1}{c}\right) *\left(3+\frac{1}{d}\right)$
is required to allow a cycle. This formula can easily be extended to any length N.

3.3. Example: disproof of the general-cycle of 2 steps length

Theorem:

```
3.3.1.
A 2-step-cycle cannot exist.
```

Assume the contrary. Then, with $b=T(a ; A) ; a=T(b ; B), S=A+B$ we must have

$$
\text { 3.3.2. } \quad 2^{s}=\left(3+\frac{1}{a}\right) *\left(3+\frac{1}{b}\right)
$$

But the range of results of the rhs are for a, b between their maximum infinity and minimum 1
3.3.3. $\quad 3^{2}=9=\left(3+\frac{1}{\mathrm{inf}}\right) *\left(3+\frac{1}{\mathrm{inf}}\right)<\left(3+\frac{1}{a}\right) *\left(3+\frac{1}{b}\right)<\left(3+\frac{1}{1}\right) *\left(3+\frac{1}{1}\right)=4^{2}$

So, for the smallest $a, b=1$ we had the rhs=16, and for increasing a, b the rhs converges to 9 , so the possible range for the rhs is $9<r h s<=16$.

The only perfect power of $2,2^{5}>9$ is $16=2^{4}$, so for any $a>1$ the rhs is nearer to 3^{2} than the lhs (and no other solution is possible, so $a=1, A=2$, and the cycle is already $1=T(1 ; 2)$.

Let's call

$$
\begin{aligned}
\text { 3.3.4. } & P C_{2}\left(3^{N}\right):=2^{S} \\
& \text { the smallest } S^{\prime} \text { th perfect power of } 2 \text { greater than } 3^{N}
\end{aligned}
$$

for the following.

The focus is here the goodness of approximation of rhs to 3^{N}, which is empirically much better for several N than that of the lhs (the $P C_{2}()$-expression), especially with increasing a.

So the characteristics of the lhs and rhs may contradict and thus may make the inequality (even more the final attempted equality) impossible - at least in certain ranges.

3.4. Example: disproof of the general cycle of 3 steps length

Example with $N=3$: let $b=T(a ; A), c=T(b ; B), a=T(c ; C), S=A+B+C$. The following equation must be satisfied, if a 3-step-cycle exists:
3.4.1. $\quad 2^{S}=\left(3+\frac{1}{a}\right) *\left(3+\frac{1}{b}\right) *\left(3+\frac{1}{c}\right)$

Now for the rhs we have the bounds
3.4.2. $\left(3+\frac{1}{\mathrm{inf}}\right) *\left(3+\frac{1}{\mathrm{inf}}\right) *\left(3+\frac{1}{\mathrm{inf}}\right)=27 . .64=\left(3+\frac{1}{1}\right) *\left(3+\frac{1}{1}\right) *\left(3+\frac{1}{1}\right)$
or, rewritten, we have some range for the equation 3.4.1:

$$
\begin{aligned}
& (3+0)(3+0)(3+0)=27 \quad / / l o w e r \text { bound } \\
& \cdots \\
& 2^{s}=(3+1 / a)(3+1 / b)(3+1 / c)=32 \\
& \cdots \\
& (3+1)(3+1)(3+1)=64 \text { // upper bound, trivial cycle }
\end{aligned}
$$

and we had two possible solutions, $3^{3}<2^{5}=2^{5}$ and $2^{5}=64=2^{6}$. where the latter would again define the trivial cycle, which we won't discuss here.

Here we see, that for $N=3$ the powerceil-function $P C_{2}\left(3^{3}\right)=32$ on the lhs has a good approximation to $3^{N}=27$, so good, that we may find a solution for a, b, c on the rhs, which are possibly in a reasonable range.

So we search for a solution of the only admissible equation
3.4.3. $\left(3+\frac{1}{a}\right) *\left(3+\frac{1}{b}\right) *\left(3+\frac{1}{c}\right)=32$

For a first estimate assume first $a=b=c$ then we had

$$
\begin{array}{ll}
& (3+1 / b)^{3}=32=2^{5} \\
& (3+1 / b)=2^{5 / 3} \\
& 1 / b=2^{5 / 3}-3 \\
& b=1 /\left(2^{5 / 3}-3\right) \sim 5.72
\end{array}
$$

and a should be smaller and c should be greater than b.

Although for higher N the following consideration is not of much value, it shows another general reasoning about bounds, so I introduce it here:

Since we want a cycle of different elements, all elements must be odd and cannot be divisible by 3, we could choose the smallest possible numbers to insert on the rhs, recalling that this makes the worst approximation to 3^{N} so that the $P C_{2}()$-expression could be a better approximation, which is required from the above formula for the existence of a cycle. The smallest possible set of (a, b, c) would be

$$
(a, b, c)=(5,7,11)
$$

and we insert that in the previous formula:
3.4.5. $\left(3+\frac{1}{5}\right) *\left(3+\frac{1}{7}\right) *\left(3+\frac{1}{11}\right) \sim 31.086$
which is already a better approximation to $3^{N}=27$ than the lhs with the $P C_{2}\left(3^{N}\right)$-term which were $P C_{2}\left(3^{3}\right)=32$.

So for even the smallest possible selection for a, b, c the inequality

$$
\left[P C_{2}\left(3^{3}\right) \leq\right] \quad 2^{s}=\left(3+\frac{l}{a}\right) *\left(3+\frac{l}{b}\right) *\left(3+\frac{l}{c}\right)
$$

cannot be satisfied since actually

$$
\text { 3.4.6. } \quad\left[P C_{2}\left(3^{3}\right) \leq\right] \quad 2^{s}>\left(3+\frac{1}{a}\right) *\left(3+\frac{1}{b}\right) *\left(3+\frac{1}{c}\right) \text { for all }(a \geq 5, b \geq 7, c \geq 11)
$$

This way of arguing is the core of the following:
the (generally) bad approximation of 2^{s} (or more precisely $P C_{2}\left(3^{N}\right)$) to 3^{N} compared to the product in the rhs, especially, if the values of the elements of the projected cycle are known to be high for other reasons (for instance $a, b, c>2^{58}$ because of computational checks) prevents the existence of many projected cycles.

From here we can derive some general conditions, which the exponents and/or the members of a cycle must allow. First observe

1) the product of the parentheses at rhs $P(N)$ will not exceed 4^{N}, it equals 4^{N} if all members $a, b, c, \ldots=1$
2) the product $P(N)$ will be greater than 3^{N}.
then the following conditions must be satisfied by selection of exponents or members:
3) the product $P(N)$ must be a perfect power of $2>=P C_{2}\left(3^{N}\right)$
4) the sum S of exponents cannnot be arbitrarily constructed but is bounded by $\log (3) / \log (2)<S / N<2$
to allow a cycle in the collatz-problem.
Since $P(N)$ must be a perfect power of 2 and must be greater than 3^{N}, its minimal value must be equal or greater than $P C_{2}\left(3^{N}\right)\left(=\right.$ powerceil $\left.2\left(3^{N}\right)\right)$, which means the next perfect power 2^{S} greater than $\left.3^{N}\right)$

3.5. Generalization, the critical inequality for general cycles

We can restate the formula using this bounds, where the obvious generalization from the 3 -stepexample to the N-step is made:

Critical inequality for the general cycle (complete form):
3.5.1. $\quad 2^{N}<P C_{2}\left(3^{N}\right) \leq 2^{S}=\prod_{k=1}^{N}\left(3+\frac{1}{a_{k}}\right)<4^{N}$
where the "critical condition" in the view of approximation is the less or equal -relation with the product only:

Critical inequality for the general cycle (short form):
3.5.2. $\quad P C_{2}\left(3^{N}\right) \leq 2^{S}=\prod_{k=1}^{N}\left(3+\frac{1}{a_{k}}\right)$
which -if it cannot be satified using a certain length N - excludes the possibility of a cycle of this length.
See for instance the excerpt of a table for $N=1$ to 200 which is fully documented in Appendix 1. For ease of documentation the formula is normed by the 3^{N}-term so we have

$$
\text { 3.5.3. } \quad \frac{P C_{2}\left(3^{N}\right)}{3^{N}} \leq \frac{2^{S}}{3^{N}}=\prod_{k=1}^{N}\left(1+\frac{1}{3 a_{k}}\right)
$$

and restated
3.5.4. ratio $=\frac{P C_{2}\left(3^{N}\right)}{3^{N} \prod_{k=1}^{N}\left(1+\frac{1}{3 a_{k}}\right)} \leq 1$ to make a cycle possible from approximation arguments ratio $=\frac{2^{h} * P C_{2}\left(3^{N}\right)}{3^{N} \prod_{k=1}^{N}\left(1+\frac{1}{3 a_{k}}\right)}=1$ to actually establish a cycle with some integer $h>=0$
a_{1} is taken as smallest element $a_{1}=5$
all following elements a_{k} are taken as the next possible odd integer, $6 i+1$ or $6 i-1$

The following table lists results for the tests for general cycles for lengthes up to $N=200$.
$N:=\quad$ cyclelength
ug: $=\quad P C_{2}\left(3^{N}\right) / 3^{N}$
prod: $=\left(3+1 / a_{1}\right)\left(3+1 / a_{2}\right) \ldots / 3^{N}$
ratio:= ug/prod must be <=1 to make this cycle possible by satisfying the critical equation

n	$\mathrm{PC}_{2}\left(3^{\mathrm{N}}\right) / 3^{\mathrm{N}}$	prod	ratio	ug < prod: cycle can exist
2	$\begin{aligned} & 1.333333 \\ & 1.777778 \end{aligned}$	$\begin{aligned} & 1.066667 \\ & 1.117460 \end{aligned}$	$\begin{aligned} & 1.250000 \\ & 1.590909 \end{aligned}$	-false- -false-

3	1.185185	1.151323	1.029412	-false-
4	1.580247	1.180844	1.338235	-false-
5	1.053498	1.203998	0.875000	
6	1.404664	1.225120	1.146552	-false-
7	1.872885	1.242876	1.506897	-false-
8	1.248590	1.259447	0.991379	
9	1.664787	1.273924	1.306818	-false-
$()$.	.908332	1.772149	1.076846	-false-
195	1.972221	1.773152	0.717492	
196	1.2726295	1.774149	0.956118	
197	1.696295	1.775143	0.637055	
198	1.130864	1.776130	0.848934	
199	1.507818	1.777116	0.565642	
	1.005212			

The twofold value of this formula is,
for small N: empirically the product is far nearer to the N 'th power of 3 than the appropriate powerceil2-function and this condition for a general cycle can easily be verified for a sample of small lengthes N.
for high values of a: the approximation of the product $P(N)$ to 3^{N} is extremely good, far too good to be worse than the $\mathrm{PC}_{2}()$-approximation for small N. Knowing from empirical research that no $a<2^{58}$ is actually a member of a cycle, we can estimate, up to which N no general cycle can exist.

3.6. Lower bounds for N , given a minimal member a of a cycle.

Assume the (unrealistic) assumption for the menbers of the hypothesized cycle, that they all are in the range $a, a+2, a+k^{*} 2, \ldots a+2 * n+d$ where also the numbers $a+k^{*} 2==0(\bmod 3)$ are excluded and d reflects the overhead given by this additional restriction, then we have according to
3.6.1.

$$
P C_{2}\left(3^{N}\right) \leq 2^{S}=\prod_{k=0}^{n-1}\left(3+\frac{1}{a_{k}}\right)
$$

and to have a rough generous limit let's set all $a_{k}=a=2^{58}$, (where our additional assumption gives then bounds for an unrealistically short cycle), then we have (or: is required)

$$
\begin{aligned}
& P C_{2}\left(3^{N}\right) \leq\left(3+\frac{1}{2^{58}}\right)^{N} \\
& \frac{P C_{2}\left(3^{N}\right)}{3^{N}} \leq\left(1+\frac{1}{3 * 2^{58}}\right)^{N} \\
& \lg _{3}\left(\frac{P C_{2}\left(3^{N}\right)}{3^{N}}\right) \leq N \lg _{3}\left(1+\frac{1}{3 * 2^{58}}\right) \\
& \lg _{3}\left(\frac{P C_{2}\left(3^{N}\right)}{3^{N}}\right) \leq \frac{N}{\ln (3)}\left(\frac{1}{3 * 2^{58}}-\frac{1}{2 * 9 * 2^{116}}+\frac{1}{27 * 2^{174}}-\ldots\right)
\end{aligned}
$$

$\ln (3)$ is about 1.098 and approximating it with 1 increases the bound at the rhs, thus makes it again easier for a cycle to exist. So we have to satisfy, with a certain N at least the bound:

$$
\lg _{3}\left(\frac{P C_{2}\left(3^{N}\right)}{3^{N}}\right) \leq N\left(\frac{1}{3 * 2^{58}}-\frac{1}{2 * 9 * 2^{116}}+\frac{1}{81 * 2^{174}}-\ldots\right)
$$

From empirical evaluation of the continued fraction of $\log (3) / \log (2)$ we find that even the best approximations in the Ihs of the above equation actually are poor. Empirically I got (best approximation depending on N), using the convergents of the continued fractions for N up to $\sim 10^{19}$, best approximations of about $1 / N$ to 1 by $P C_{2}\left(3^{N}\right) / 3^{N}$:

```
24 1.00000000000000010635580339 0.999999999999999994477187338
    2^9115015689657667 2^9881527843552324
    3^5750934602875680 3^6234549927241963
25 1.00000000000000000179327108 0.999999999999999999656514447
    2^206745572560704147 2^216627100404256471
    3^130441933147714940 3^136676483074956903
26 1.00000000000000000015168663 0.999999999999999999835841555
    2^630118245525664765 2^423372672964960618
    3^397560349370386783 3^267118416222671843
27 1.000000000000000000002696849 0.999999999999999999987528186
    2^7354673373747273033 2^6724555128221608268
    3^4640282259296926456 3^4242721909926539673
28 1.00000000000000000001012431 0.999999999999999999998315582
    2^43497921996957973433 2^36143248623210700400
    3^27444133206411171953 3^22803850947114245497
29 1.000000000000000000000340444 0.999999999999999999999328013
    2^123139092617126647266 2^79641170620168673833
    3^77692117359936589403 3^50247984153525417450
```

A guess, which is a lower bound for the remaining fraction as function of N, based on plots of this approximations is the following:
3.6.2. $1+\frac{1}{9 N \lg _{3}(N)}<\frac{P C_{2}\left(3^{N}\right)}{3^{N}}$
taking logarithms this is
3.6.3.

$$
\log (3)\left(\frac{1}{9 N \lg _{3}(N)}-\frac{1}{2} \frac{1}{\left(9 N \lg _{3}(N)\right)^{2}}+\frac{1}{3} \frac{1}{\left(9 N \lg _{3}(N)\right)^{3}} \ldots\right)<\lg _{3}\left(\frac{P C_{2}\left(3^{N}\right)}{3^{N}}\right)
$$

so the lhs in the above equation must be smaller than the rhs in the equation before and we get for N a lower bound:
3.6.4.

$$
\frac{1}{9 N \lg _{3}(N)}<\lg _{3} \frac{P C_{2}\left(3^{N}\right)}{3^{N}} \leq N\left(\frac{1}{3 * 2^{58}}-\frac{1}{2 * 9 * 2^{116}}+\frac{1}{27 * 2^{174}}-\ldots\right)
$$

Taking the lhs and rhs only we get a rough estimate for N :
3.6.5. $\frac{1}{9 N^{2} \lg _{3}(N)} \leq \frac{1}{3 * 2^{58}}-$ eps

Numerical computation says then that by

$$
\begin{aligned}
& 58 \ln (2)-\ln (3)+\ln (\ln (3)) \leq 2 \ln (N)+\ln (\ln (N)) \\
& N \geq 76260075
\end{aligned}
$$

the length of a cycle must be at least $N=76260075$, or $N>1.14^{*} 2^{\wedge} 26$ or $N>1.77^{*} 3^{\wedge} 16$ or $N>$ $7.63^{*} 10^{\wedge} 7$ to allow a general cycle. The minimal length of a general cycle given at eq 2.26 in [lagarias] is $N>275000=2.75 * 10^{5}$ based on the assumption of $a>=2^{40}$; my formula gives $N>182317$ for this.

3.7. A loose end here

For the derivation of this formula I assumed the unrealistic structure of the cycle, that all members a_{k} equal a_{0}; actually they must all be greater and also at least increasing by 2 or 4 , depending on the forbidden numbers divisible by 3 . So for an assumed cycle of length $N=10^{8}$ the last member a_{n-1} is in fact at least about $a_{n} \sim a_{0}+3^{*} 10^{8}$ and the rhs of the critical equation decreases again by something according to the new estimated formula
3.7.1.

$$
P C_{2}\left(3^{N}\right) \leq 2^{S}=\prod_{k=0}^{n-1}\left(3+\frac{1}{a_{0}+3 k}\right)=3^{N} \prod_{k=0}^{n-1}\left(1+\frac{1}{3 a_{0}+9 k}\right)
$$

and taking logarithms this is
3.7.2.

$$
\frac{1}{9 N \lg _{3}(N)}<\lg _{3}\left(\frac{P C_{2}\left(3^{N}\right)}{3^{N}}\right) \leq \sum_{k=0}^{N-1} \lg _{3}\left(1+\frac{1}{3 a_{0}+9 k}\right)
$$

$$
\frac{1}{9 N \lg _{3}(N)}<\sum_{k=0}^{N-1} \lg _{3}\left(1+\frac{1}{3 a_{0}+9 k}\right)
$$

Generally the given fomula has its value in allowing the following formulation:
without loss of generality a can be assumed to be the smallest element of the cycle.
If the critical condition cannot be satisfied for a certain a, then no higher a can satisfy the critical condition.

This theorem allows to exclude all search for greater a once for a certain a this hypothetic cycle was disproven - so we don't need to look at $a+2$, if the condition is already not satisfied for a.

4. The primitive cycle ("1-cycle" [Simons/deWeger], "circuit" [Steiner])

4.1. Definitions

With the considerations of the previous chapter it was not possible to exclude the possibility of a general cycle finally, but at least one finds an estimate for a lower bound for the length, depending on the value of its smallest number a_{0}.

To simplify things one could next look at cycles of special forms; the most primitive the one, which has only ascending steps and then one single descending step. One may call such a cycle a "1-peak-cycle". Such a cycle has the form:
4.1.1. $a=T(a ; 1,1,1, . .1, A)$ with length $N, N-1$ ones and $S=N-1+A$

Before studying the 1-peak-cycle let's introduce some more convenient notations.
Write a "1-peak-transformation", not necessarily forming a cycle:

```
4.1.2. }PT(a;N:A):=\quadb=T(a;1,1,1,..1,A
    with length N}N\mathrm{ , the first N-1exponents being 1 and S=N-1+A
```

Write concatenations of several such "1-peak-transformations" as "m-peak-transformation":

```
4.1.3.
    \(b=P T\left(a ; N_{1}: A_{1}, N_{2}: A_{2}, \ldots N_{m}: A_{m},\right)\)
    with overall length \(N=N_{1}+N_{2}+\ldots+N_{m}, S=(N-m)+A_{1}+A_{2}+\ldots A_{m}\)
```

and a "m-peak-cycle" then equalling $b=a$:
4.1.4. $\quad a=P T\left(a ; N_{1}: A_{1}, N_{2}: A_{2}, \ldots N_{m}: A_{m}\right)$

It is obvious, that any general cycle can be understood as a "m-peak-cycle" where possibly some of the partial "1-peak-transformations" are allowed to be degenerate, meaning they have the length 1 and only one exponent $A>1$.

This type of cycle was also studied by several researchers; using the notation "1-cycle" and "m-cycle" and indeed for this type of cycles definitive results could be proven:

* There is no 1-cycle of any length except the trivial one (Ray Steiner, 1978)
* There is no 2-cycle of any length (John Simons, 1996)
* There are no 3..68-cycles (Benne de Weger/John Simons, 2002)
* several $m>68$-cycles are also excluded (by similar approximation arguments to mine) (deWeger/Simons, 2002)
We shall see, that the "critical equation", as stated in the chapter about the general cycle provides sharp bounds, which cannot be satisfied by the quality of approximation of $P C_{2}\left(3^{N}\right) / 3^{N}$. (and an interesting relation to a still open detail in the problem of sums of like powers by E.Waring ${ }^{1}$ occurs).

The canonical form of a 1-peak-cycle/1-cycle is:

$$
\begin{aligned}
& a=T(a ; 1,1,1,1, \ldots, 1, A)=P T(a ; N: A) \\
&=\frac{3^{N}}{2^{S}} a+\frac{3^{N-1}+3^{N-2} 2^{1}+\ldots+3^{1} 2^{N-2}+2^{N-1}}{2^{S}} \\
&=\frac{3^{N}}{2^{S}} a+\frac{3^{N}-2^{N}}{2^{S}}
\end{aligned}
$$

[^2]This transformation can be separated into two steps: an only-ascending step, involving only the 1exponents, and the final step involving the A-exponent.

Rewritten using $L=N-1$ this is:
4.1.6.

$$
\begin{array}{ll}
b=T(a ; 1,1,1,1, \ldots, 1) & =\frac{3^{L}}{2^{L}} a+\frac{3^{L-1}+3^{L-2} 2^{1}+\ldots+3^{1} 2^{L-2}+2^{L-1}}{2^{L}}=\frac{3^{L}}{2^{L}} a+\frac{3^{L}-2^{L}}{2^{L}} \\
a=T(b ; A) & =\frac{3 b+1}{2^{A}}
\end{array}
$$

The structure of b and a from the first of these equations can be written in terms of a common free parameter k. First rearrange:

$$
\begin{aligned}
& b=\frac{3^{L}}{2^{L}} a+\frac{3^{L}-2^{L}}{2^{L}}=\frac{3^{L}(a+1)}{2^{L}}-1 \\
& b+1=\frac{3^{L}(a+1)}{2^{L}} \\
& \frac{b+1}{3^{L}}=\frac{a+1}{2^{L}}
\end{aligned}
$$

and from this follows, that the numerators must be equal multiples, say k 'th multiples, of their denominators and must be described by:

$$
\text { 4.1.8. } b=k * 3^{L}-1 \quad a=k * 2^{L}-1
$$

check that this gives the required identity:

$$
\begin{gathered}
\frac{\left(k * 3^{L}-1\right)+1}{3^{L}}=\frac{\left(k * 2^{L}-1\right)+1}{2^{L}} \\
k
\end{gathered}
$$

Moreover, since b must be odd, k must be even and the first theorem for 1-peak-transformations is

$$
\begin{aligned}
& \text { 4.1.9. Given a 1-peak-transformation } b=P T(a ; L: 1) \text { then it follows for } a \text { and } b \text {, that } \\
& \qquad \begin{array}{l}
a=k^{*} 2 * 2^{L}-1 \quad \text { and } \\
b
\end{array}=^{*} 2^{*} 3^{L}-1
\end{aligned}
$$

This also means that the intermediate members of the purely ascending part of a 1-peaktransformation are

$$
\text { 4.1.10. }\left(a_{0}, a_{1}, a_{2}, \ldots a_{L}\right)=2^{*} k^{*}\left(2^{L}, 2^{L-1 *} * 3^{1}, 2^{L-2} * 3^{2}, \ldots, 3^{L}\right)-1
$$

So for a three-step-transformation $b=T(a ; 1,1,1)$ we have $L=3$ and the first three solutions

$$
\begin{aligned}
& \left(k=0 ;\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=0(8,12,18,27 .)-1=(-1,-1,-1,-1)---n o t \text { in the domain }\right) \\
& k=1 ;\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=2(8,12,18,27 .)-1=(15,23,35,53) \\
& k=2 ;\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=4(8,12,18,27 .)-1=(31,47,71,107)
\end{aligned}
$$

To form a 1-peak-cycle, a single descending transformation with exponent $A>1$ must be appended.

$$
a=T(b ; A)
$$

since $b=2 k^{*} 3^{L}-1$ the structure of a must then also be:
4.1.11. $a=\frac{3\left(2 k * 3^{L}-1\right)+1}{2^{A}}=\frac{2 k * 3^{N}-2}{2^{A}}=\frac{k * 3^{N}-1}{2^{A-1}}$

Here again occurs, that k must be odd such that the numerator is divisible by the denominator and we can complete the description of the structure of a :

$a=k * 2^{N}-1$		
4.1.12.	$a=\frac{k * 3^{N}-1}{2^{A-1}}$	simultaneously, k odd, >0

From here the critical equation for the 1-peak-cycle can be derived:
by equalling both structure-descriptions of a :
4.1.13. $k * 2^{N}-1=\frac{k * 3^{N}-1}{2^{A-1}}$
and finally to allow a 1-peak-cycle, we need a length N of the cycle, such with a free odd positive parameter k and $A>1$ the following equality holds:

$$
\text { 4.1.14. } \quad 2^{A-1}=\frac{k * 3^{N}-1}{k * 2^{N}-1} \quad A>1, k \text { odd }>0
$$

It is interesting, that k cannot even be 1 in this formula.
Proof: The term $3^{N}-1$ contains powers of 2 in a systematic form; if N is odd, then always $A=2$; but A must also be related to N by $A^{\sim} N^{*}(\log (3) / \log (2)-1)$, so for odd N there is no further solution except one ($A=2, N=1, a=1$), which describes the "trivial cycle".

So, for a second solution, N must be even. But then in the denominator the form $2^{N}-1$ contains the primefactor 3 , but the numerator does systematically not, and we get a noninteger result for all $N=/=1$

To relate this result to the critical inequality for general cycles note, that for a 1-peak-cycle the transformation is $a=P T(a ; N: A)$, thus $S=N-1+A=N^{*}(A-1)$ and multiplying with 2^{N} gives:
4.1.15. $\quad 2^{S}=2^{N} \frac{k * 3^{N}-1}{k * 2^{N}-1}$
and finally it must be solvable for N, S and a free parameter $k>0$, odd,

$$
\text { 4.1.16. } \quad \frac{P C_{2}\left(3^{N}\right)}{3^{N}} \leq \frac{2^{S}}{3^{N}}=\frac{2^{N}}{3^{N}} \frac{k * 3^{N}-1}{k * 2^{N}-1}
$$

4.2. A short analysis of the approximation using a table of irregular fractions

Let's discuss the equation 4.1.14

$$
\text { 4.2.1. } \quad 2^{A-1}=\frac{k * 3^{N}-1}{k * 2^{N}-1} \quad A>1, \text { k odd }>0
$$

where heuristics show, that the Ihs are always greater than the Ihs, and we may formulate as a proposal, which denies the possibility of a primitive cycle:
conjecture:

$$
\text { 4.2.2. } \quad 2^{A-1}>\frac{k * 3^{N}-1}{k * 2^{N}-1} \quad A>1, k \text { odd }>0
$$

First observe the bounds for the rhs in terms of k :

$$
\text { 4.2.3. } \quad \frac{3^{N}}{2^{N}}>\frac{k * 3^{N}-1}{k * 2^{N}-1}>\frac{-1}{-1}
$$

for k->inf , $k, k=0$ respectively. Since it is required that $k>0$, the smallest rhs in 4.2.2
We may build a table for the empirical values of the middle term. Let's denote

$$
\begin{aligned}
& d_{k}=\left\lfloor\frac{k * 3^{N}-1}{k * 2^{N}-1}\right\rfloor \quad \frac{p_{k}}{q_{k}}=\left\{\frac{k * 3^{N}-1}{k^{*} 2^{N}-1}\right\} \text { the integer and fractional part } \\
& d_{o o}=\left\lfloor\frac{3^{N}}{2^{N}}\right\rfloor \quad \frac{p}{q}=\frac{p_{o o}}{q_{o o}}=\left\{\frac{3^{N}}{2^{N}}\right\} \text { the integer and fractional part, } k \rightarrow \circ o
\end{aligned}
$$

$d=\min \left(d_{k}\right)$, and the fractional part possibly nonregular if there exists one pair $d_{k}<>d_{j}$
The table below focuses the question, whether the (irregular) fractional part can become integer (or zero), given integer d. Here increasing N define the rows and increasing k define the columns. The digit d is taken out of each entry, because empirically occurs, that it doesn't change when k varies from 1 to infinity. Also the entry for $k=0$ was inserted, however as irregular fraction with negative fractional part to have the same d :

N	d	$k=0$	1	2	3	4	5	6	\ldots	∞
1	$1+$	$\frac{0}{-1}$	$\frac{1}{1}$	$\frac{2}{3}$	$\frac{3}{5}$	$\frac{4}{7}$	$\frac{5}{9}$	$\frac{6}{11}$	$\frac{1}{2}$	
2	$2+$	$\frac{1}{-1}$	$\frac{2}{3}$	$\frac{3}{7}$	$\frac{4}{11}$	$\frac{5}{15}$	$\frac{6}{19}$	$\frac{7}{23}$		$\frac{1}{4}$
3	$3+$	$\frac{2}{-1}$	$\frac{5}{7}$	$\frac{8}{15}$	$\frac{11}{23}$	$\frac{14}{31}$	$\frac{17}{39}$	$\frac{20}{37}$		$\frac{3}{8}$
4	$5+$	$\frac{4}{-1}$	$\frac{5}{15}$	$\frac{6}{31}$	$\frac{7}{47}$	$\frac{8}{63}$	$\frac{9}{79}$	$\frac{10}{95}$	$\frac{1}{16}$	
5	$7+$	$\frac{6}{-1}$	$\frac{25}{31}$	$\frac{44}{63}$	$\frac{63}{95}$	$\frac{82}{127}$	$\frac{101}{159}$	$\frac{120}{191}$	$\frac{19}{32}$	
\ldots	\ldots	\ldots								

The proof of R.Steiner ${ }^{1}$ that there is no 1-peak-cycle, was successful by proving that the approximation of the rhs in 4.2.1) has a certain bad degree and thus an integer-solution is not possible - which means translated to the following table, that d plus the fractional part p / q is never a power of 2 (which could also only happen if the fractional part p / q degenerates to become integer)

Already in this small snippet one can nicely see, that
a) the progression of numerators and denominators are indicated by the inf-term
b) $d=d_{k}$ for $k>0$ and $N>1$, so we don't have an irregular fraction crossing an integer for $k>0$

If b) can be shown to be valid for all N, then the 1-peak-cycle is also disproven.
It might be of interest to plot a graph with interpolated k. Such graph exhibits empirically that the crossing of an integer occurs only between $0<k<1$. ${ }^{1}$

When plotting this interpolated table for the $3 x+1$-problem, moreover allowing also negative k, then we find integer crossing in the negative domain, and also the 1-peak-cycle residing there.

The reason, that there are no integer-crossings for $k>=1$ depends on the numerator-value $p=p_{o o}$ of the fraction for $k->o o$. Since it is by construction $p_{0}=d-1$, for to have no integer crossings we need, that $p_{0}+k^{*} p_{o \circ}<-1+k^{*} q_{o o}$ or $p_{0}+1<k^{*}\left(q_{o \circ}-p_{o \circ}\right)$. or $d<k^{*}\left(q_{o \circ}-p_{o \circ}\right)$, which - if it is already true for $k=1$ - is obviously true for all $k>1$. For $k=1$ the last expression is

$$
\begin{aligned}
& d<1\left(q_{o o}-p_{o o}\right) \\
& d+p_{o o}<q_{o o}
\end{aligned}
$$

or, using the expressions for $3 x+1$, this means for any row N

$$
\begin{aligned}
& \left\lfloor\frac{3^{N}-1}{2^{N}-1}\right\rfloor+\left\{\frac{3^{N}}{2^{N}}\right\} * 2^{N}<2^{N} \\
& \left\lfloor 3^{N}\left(\frac{1}{2^{N}-1}\right)-\frac{1}{2^{N}-1}\right\rfloor<2^{N}\left(1-\left\{\frac{3^{N}}{2^{N}}\right\}\right)
\end{aligned}
$$

[^3]\[

$$
\begin{aligned}
& \left\lfloor 3^{N}\left(\frac{1}{2^{N}}+\frac{1}{2^{2 N}}+\frac{1}{2^{3 N}}+\ldots\right)-\left(\frac{1}{2^{N}}+\frac{1}{2^{2 N}}+\frac{1}{2^{3 N}}+\ldots\right)\right\rfloor<2^{N}\left(1-\left\{\frac{3^{N}}{2^{N}}\right\}\right) \\
& \left.\left\lvert\, \frac{3^{N}-1}{2^{N}}+\frac{3^{N}-1}{4^{N}}+e p s\right.\right\rfloor<2^{N}\left(1-\left\{\frac{3^{N}}{2^{N}}\right\}\right)
\end{aligned}
$$
\]

and for large N : we can formulate:
a: if $\left\lfloor\frac{3^{N}}{2^{N}}\right\rfloor<2^{N}\left(1-\left\{\frac{3^{N}}{2^{N}}\right\}\right)$
then there is no 1-peak-cycle for large N.

This can be rewritten in two ways:
b: \quad if $\left\lfloor\frac{3^{N}}{2^{N}}\right\rfloor\left(2^{N}-1\right)>3^{N}-2^{N}$
c: \quad or if $\left\{\frac{3^{N}}{2^{N}}\right\}-\frac{1}{2^{N}}\left\{\frac{3^{N}}{2^{N}}\right\}<1-\frac{3^{N}}{4^{N}}$
then there is no 1-peak-cycle for large N.
Formulation c) occurs in a sharper conjecture
c.1: \quad For $N>2$ we have $\left\{\frac{3^{N}}{2^{N}}\right\}<1-\frac{3^{N}}{4^{N}}$
in a detail of the Waring-problem
(see mathworld/powerfrac http://mathworld.wolfram.com/PowerFractionalParts.html)
where it is mentioned, that this detail is not yet solved, nevertheless assumed to be true.
But if it is true, then also c) is true and the 1-peak-cycle is not possible due to missing crossing-points in the above table.

Kurt Mahler approached the same problem in terms of his z-numbers, and was able to prove, that at most finitely many z-numbers, and thus solutions for $c .1$, can exist.

The above table seems to be a useful type of display. In the appendix I have documented similar tables for Collatz-like problem using different parameters, so $(5 x+1) / 2,(5 x+1) / 3,(11 x+1) / 2,(11 x+1) / 3$. There are crossing points for some of these versions and thus cycles in that problem-configurations cannot be excluded by the investigated properties here.

4.3. Concatenated m-peak-cycles -> general cycle

(much more material needs to be inserted; so far only a sketch:)
The discussion is a simple generalization of the previous. Assume two "primitive transformations" (each single one not being a cycle):

$$
b=P T\left(a ; N_{1}: A\right) \quad a=P T\left(b ; N_{2}: B\right)
$$

then we know a structural description for a and b from the earlier discussion of $b=P T\left(a ; N_{1}: A\right)$

$$
a=k 2^{N_{1}}-1 \quad b=\frac{k 3^{N_{1}}-1}{2^{A-1}}
$$

and as well for a and b by the second transformation $a=P T\left(b ; N_{2}: B\right)$

$$
b=j 2^{N_{2}}-1 \quad a=\frac{j 3^{N_{2}}-1}{2^{B-1}}
$$

which must also agree (be simultaneously true). Then we can again build the trivial equation of the products

$$
a b=\underbrace{\left(k 2^{N_{1}}-1\right)}_{a} \underbrace{\left(j 2^{N_{2}}-1\right)}_{b}=\underbrace{\left(\frac{k 3^{N_{1}}-1}{2^{A-1}}\right)}_{b} \underbrace{\left.\frac{j 3^{N_{2}}-1}{2^{B-1}}\right)}_{a}
$$

Then

$$
\text { 1. } \quad 2^{A-1+B-1}=\left(\frac{k 3^{N_{1}}-1}{j 2^{N_{2}}-1}\right)\left(\frac{j 3^{N_{2}}-1}{k 2^{N_{1}}-1}\right)
$$

and also, by rotating denominators

$$
\text { 2. } \quad 2^{A-1+B-1}=\left(\frac{k 3^{N_{1}}-1}{k 2^{N_{1}}-1}\right)\left(\frac{j 3^{N_{2}}-1}{j 2^{N_{2}}-1}\right)
$$

Here in 1. each parenthese must be a perfect power of 2 , which imposes restrictions on j and k for modular reasons (for instance the two most simple ones: both must be odd, if they are simultaneously 1 they form the trivial cycle)
In 2. we recognize, that increasing k (resp j) decreases the parentheses down to a perfect power of 3/2 which is always noninteger. The clue here were that we want to be able to show, that they also do not cross an integer bound while increasing k from 1 to infinity. But this is open to be proved...

It is obviously generalizable to any number of partial primitive transformations ("m-cycles"). Note, that based on the form 2. only, Simons/deWeger could show, that up to 72 concatenations there is no such m-cycle. He also showed that -by increasing the number m of partial cycles- the limit condition becomes too weak for the disprove, and integer-crossings cannot be excluded. Here a reintroduction of the modular arguments in the form of 1. might be helpful (each term in 1. must be a perfect power of 2)

4.4. Some loose ends

(not yet inserted)

5. Appendix

5.1. Approximation table for the $(3 x+1) / 2$-problem

The following table lists results for the tests for general cycles for lengthes up to $\mathrm{N}=200$.
$N:=\quad$ cyclelength
ug:= powerceil2(3)/3^N
prod: $=(3+1 / a)(3+1 / b) . . . / 3^{\wedge} N$
ratio:= ug/prod must be <=1 to make this cycle possible by satisfying the critical equation

n	$u g$	prod	ug/prod	ug <= prod: cycle can exist
1	1.333333	1.066667	1.250000	-false-
2	1.777778	1.117460	1.590909	-false-
3	1.185185	1.151323	1.029412	-false-
4	1.580247	1.180844	1.338235	-false-
5	1.053498	1.203998	0.875000	
6	1.404664	1.225120	1.146552	-false-
7	1.872885	1.242876	1.506897	-false-
8	1.248590	1.259447	0.991379	
9	1.664787	1.273924	1.306818	-false-
10	1.109858	1.287622	0.861944	
11	1.479811	1.299885	1.138416	-false-
12	1.973081	1.311596	1.504336	-false-
13	1.315387	1.322259	0.994803	
14	1.753850	1.332509	1.316201	-false-
15	1.169233	1.341960	0.871288	
16	1.558977	1.351089	1.153868	-false-
17	1.039318	1.359586	0.764437	
18	1.385758	1.367826	1.013110	-false-
19	1.847677	1.375554	1.343224	-false-
20	1.231785	1.383070	0.890616	
21	1.642379	1.390163	1.181429	-false-
22	1.094920	1.397079	0.783720	
23	1.459893	1.403638	1.040078	-false-
24	1.946524	1.410048	1.380467	-false-
25	1.297683	1.416152	0.916344	
26	1.730243	1.422127	1.216659	-false-
27	1.153496	1.427838	0.807861	
28	1.537994	1.433438	1.072941	-false-
29	1.025329	1.438807	0.712625	
30	1.367106	1.444077	0.946699	
31	1.822808	1.449144	1.257852	-false-
32	1.215205	1.454124	0.835696	
33	1.620274	1.458923	1.110596	-false-
34	1.080182	1.463644	0.738009	
35	1.440243	1.468204	0.980956	
36	1.920324	1.472694	1.303954	-false-
37	1.280216	1.477038	0.866746	
38	1.706955	1.481319	1.152321	-false-
39	1.137970	1.485469	0.766068	
40	1.517293	1.489561	1.018618	-false-
41	1.011529	1.493533	0.677273	
42	1.348705	1.497453	0.900666	
43	1.798274	1. 501263	1.197840	-false-
44	1.198849	1. 505026	0.796564	
45	1.598465	1. 508688	1.059507	-false-
46	1.065644	1. 512306	0.704648	
47	1.420858	1.515831	0.937346	
48	1.894477	1.519316	1.246928	-false-
49	1.262985	1.522714	0.829430	
50	1.683980	1.526076	1.103471	-false-
51	1.122653	1.529358	0.734068	
52	1.496871	1.532605	0.976684	
53	1.995828	1.535778	1.299555	-false-
54	1.330552	1.538919	0.864602	
55	1.774069	1.541990	1.150506	-false-
56	1.182713	1.545032	0.765494	
57	1.576951	1.548009	1.018696	-false-
58	1.051300	1.550957	0.677840	
59	1.401734	1.553845	0.902106	
60	1.868978	1.556707	1.200598	-false-
61	1.245986	1.559512	0.798959	
62	1.661314	1.562292	1.063383	-false-

146	1.510970	1.716418	0.880304	
147	1.007313	1.717709	0.586428	
148	1.343084	1.718996	0.781319	
149	1.790779	1.720272	1.040986	-false-
150	1.193853	1.721544	0.693478	
151	1.591804	1.722805	0.923960	
152	1.061202	1.724062	0.615525	
153	1.414937	1.725308	0.820107	
154	1.886582	1.726550	1.092689	-false-
155	1.257721	1.727783	0.727940	
156	1.676962	1.729011	0.969897	
157	1.117975	1.730229	0.646143	
158	1.490633	1.731443	0.860919	
159	1.987510	1.732648	1.147094	-false-
160	1.325007	1.733849	0.764200	
161	1.766676	1.735041	1.018233	-false-
162	1.177784	1.736228	0.678358	
163	1.570379	1.737407	0.903863	
164	1.046919	1.738582	0.602168	
165	1.395892	1.739748	0.802353	
166	1.861189	1.740910	1.069090	-false-
167	1.240793	1.742063	0.712255	
168	1.654391	1.743213	0.949047	
169	1.102927	1.744355	0.632284	
170	1.470569	1.745493	0.842495	
171	1.960759	1.746623	1.122600	-false-
172	1.307173	1.747749	0.747918	
173	1.742897	1.748867	0.996586	
174	1.161931	1.749982	0.663968	
175	1.549242	1.751088	0.884731	
176	1.032828	1.752192	0.589449	
177	1.377104	1.753288	0.785441	
178	1.836138	1.754380	1.046602	-false-
179	1.224092	1.755465	0.697304	
180	1.632123	1.756547	0.929166	
181	1.088082	1.757621	0.619065	
182	1.450776	1.758692	0.824918	
183	1.934368	1.759756	1.099225	-false-
184	1.289579	1.760817	0.732375	
185	1.719438	1.761870	0.975916	
186	1.146292	1.762921	0.650223	
187	1.528390	1.763965	0.866451	
188	1.018926	1.765005	0.577294	
189	1.358569	1.766039	0.769274	
190	1.811425	1.767070	1.025100	-false-
191	1.207616	1.768095	0.683004	
192	1.610155	1.769116	0.910147	
193	1.073437	1.770131	0.606417	
194	1.431249	1.771143	0.808093	
195	1.908332	1.772149	1.076846	-false-
196	1.272221	1.773152	0.717492	
197	1.696295	1.774149	0.956118	
198	1.130864	1.775143	0.637055	
199	1.507818	1.776130	0.848934	
200	1.005212	1.777116	0.565642	

5.2. Residual tables for other problem-parameters

The red lines mark the cross-over-points, which -if are integer- allow an 1-cycle for that parameters (if some other conditions are also met, but this is not the focus of these tables). The leading integer of a row is the integral part of $\left(3^{n} *_{i}-1\right) /\left(2^{n} *_{i-1}\right)$ and the following fractions the respective fractional parts for $i>=0$, where n refers to the n 'th row.

(irregular) Fraction or digits of ($\left.3^{\wedge} n^{\star} \mathbf{i}-1\right) /\left(2^{\wedge} n^{*} \mathbf{i}-1\right)$ vertical $N=1$..maxn, horizontal $i=0.5$, oo							(irregular) Fraction or digits of ($\left.5^{\wedge} n^{*} \mathbf{i - 1}\right) /\left(2^{\wedge} n^{*}\right.$ i-1) vertical $N=1$..maxn, horizontal $i=0.5$, oo						
0	1	2	3	4	5	1	1	2	3	4	5	6	1
$1--$		3	----	--- 7	--- 9	----	$2---1$	1	3	5	7	9	2
1	2	3	4	5	6	1	5			8	9	10	1
-1	3	7	11	15	19	4	-1	3	7	11	15	19	4
2	5	8	11	14	17	3	14	19	24	29	34	39	5
-1	7	15	23	31	39	8	-1	7	15	23	31	39	8
4	5	6	7	8	9	1	38	39	40	41	42	43	1
$5--$ -1	15	31	47	63	79	16	-1	15	31	47	63	79	16
6	25	44	63	82	101	19	96	117	138	159	180	201	21
$7-$ -1	31	63	95	127	159	32	-1	31	63	95	127	159	32
10	35	60	85	110	135	25	243	252	261	270	279	288	9
11	63	---	---	---	---- 319	----	244 ---	63	127	191	255	319	64
16	27	38	49	60	71	11	609	654	699	744	789	834	45
$\begin{array}{r}17 \\ \hline-1\end{array}$	127	255	---	511	639	128	-1	127	255	383	511	639	128
24	185	346	507	668	829	161	1524	1749	1974	2199	2424	2649	225
25 -1	255	511	767	1023	1279	256	-1	255	511	767	1023	1279	256
37	264	491	718	945	1172	227	3813	4170	4527	4884	5241	5598	357
38 -1	511	1023	1535	2047	2559	512	-1	511	1023	1535	2047	2559	512
56	737	1418	2099	2780	3461	681	9535	10296	11057	11818	12579	13340	761
$\begin{array}{r}57 \\ \hline-1\end{array}$	----	2047	3071	4095	----	1024	9536---1	1023	2047	3071	4095	5119	1024

(irregular) Fraction or digits of $\left(5^{\wedge} n^{*} i-1\right) /\left(3{ }^{\wedge} n^{*} i-1\right)$ vertical $\mathrm{N}=1$. maxn, horizontal $\mathrm{i}=0.5,00$

(irregular) Fraction or digits of $\left(11^{\wedge} n^{*} \mathrm{i}-1\right) /\left(3^{\wedge} \mathrm{n}^{*} \mathrm{i}-1\right)$
vertical $\mathrm{N}=1$..maxn, horizontal $\mathrm{i}=0 . .5,00$

	2	4	6	8	10	12	2
	-1	2	5	8	11	14	3
	12	16	20	24	28	32	4
	-1	8	17	26	35	44	9
	48	56	64	72	80	88	8
49	-1	26	53	80	107	134	27
	179	240	301	362	423	484	61
	-1	80	161	242	323	404	81
	661	846	1031	1216	1401	1586	185
662	--1	242	---- 485	728	$\begin{array}{r}---- \\ \hline 971\end{array}$	------	243
	2429	2520	2611	2702	2793	2884	91
2430	-1	728	1457	2186	2915	3644	729
	8909	9910	10911	11912	12913	13914	1001
8910	------	------	------	------	------	------	-----
	-1	2186	4373	6560	8747	10934	2187
	32670	37120	41570	46020	50470	54920	4450
32671	------	------	------	------	------	--	------
	-1	6560	13121	19682	26243	32804	6561
	119795	122818	125841	128864	131887	134910	3023
11979	-1	19682	39365	59048	78731	98414	19683
	439251	472504	505757	539010	572263	605516	33253
439252	-----	------	------	------	------	------	------
	-1	59048	118097	177146	236195	295244	59049

5.3. Paraphrase of the Steiner-proof of 1977

[Steiner]:
Briefly, my 1977 proof runs as follows. I will just give the steps, not the details here.
1). Any circuit for the $3 x+1$ problem corresponds to an integer solution k, l, h, of the Diophantine equation

$$
\begin{equation*}
\left(2^{k+1}-3^{k}\right) h=2^{\prime}-1 \tag{*}
\end{equation*}
$$

2) To show that the only integer solution of $\left(^{*}\right)$ is $1,1,1$.

First, reduce this to a problem in linear forms in logarithms:

$$
0<\left|I / k-\log _{2} 3 / 2\right|<1 /\left(k^{*} \ln 2^{*}\left(2^{k}-1\right)\right)
$$

3). This shows that if $k>4$ then I / k must be a convergent in the continued fraction expansion of $\log _{2}$ (3/2) .
4). By using a lemma of LeGENDRE, one can prove that a partial quotient of this CF must exceed 10^{4690}.
5). Using BAKER'S, or RHIN'S theorem one finds a reasonable upper bound for k and the denominators of all convergents in this range are all smaller than 2500.

The Steiner-formula is identical to my critical condition for 1-peak-cycles, by few rearrangements.
First, to relate variables of his formula (*) and of mine (4.1.14), I translate:
$(h, l, k) \quad->(k, A-1, N)$
$2^{A-1} k 2^{N}-k 3^{N}=2^{A-1}-1$

Then
$2^{A-1}\left(k 2^{N}-1\right)=k 3^{N}-1$
$2^{A-1}=\frac{k 3^{N}-1}{k 2^{N}-1}$

[^0]: O
 ${ }^{1}$ Note, that extending the domain to negative integers, we also have $a=-1$ and $A=1$ as another cycle and few other known cycles using negative a.

[^1]: 0
 ${ }^{1}$ The relation becomes obvious, if we recursively denote a partial sequence 1,2 as $a_{0}, 1,2,2$ as b_{0}, then the occuring two types of sequences of a_{0}, b_{0} as a_{1}, b_{1} and so on. The lengthes of $a_{0}, a_{1}, a_{2}, \ldots$ reflect then the coefficients of the continued fraction of $\log (3) / \log (2)$.

[^2]: ${ }^{1}$ (see mathworld, mentioned in the entry powerfraction)

[^3]: 0
 ${ }^{1}$ A property which is special to the $3 x+1$-question. Other parameters, $a x+b$ may have such crossings also in the table, and also having appropriate numbers in d, so that a 1-peak-cycle is possible with such parameters (see some examples in the appendix at 5.2)

