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Cycles in the Collatz-problem 

(minor edits 2012-08-11  First version: 10'2004) 

Abstract: The possibility of occurence of cycles in the Collatz-problem is discussed. Here I 

use my approach to the collatz-problem with the means of an exponential diophantine ex-

pression. Although I don't arrive at a proof or disproof of cycles I find some strong argu-

ments on a path of rational approximation, which also shows a connection to an unsolved 

aspect in the Waring-problem. My discussion is based on the consideration of a com-

pressed version of the Collatz-transformation, which reduces to the consideration of odd 

numbers only. 

The approach here can easily be extended to connected cycles, analoguously to that of m-

cycles in [Steiner] and [de Weger], though I didn't append that formulas yet. This will be 

continued in the next days/weeks. 
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1. Notation/Basic Definitions 

1.1. The forward-transformation T() 

In the following I rewrite the Collatz-statement in a compressed form. Instead of 

1.1.1. 





 +

==→
evenisaif

2

a

oddisafi1a3

b:b)a(Collatz     

I write in all the following: 

1.1.2. forward-transformation: 

oddarebanda,b,a
a

b:b)A;a(T
A

0
2

13
>

+
==→ , A>0 is integer 

such, that A is the highest exponent of 2, keeping the condition a and b are odd integers.  

The use of the parameter A may seem to be of no use, since it is completely determined by the value 

of a. But this notation allows then to discuss a structure of an iterated transformation using a as an 

unknown variable by means of its exponents only. 

 

1.1.3. In any equation for members of an iterated transformation only positive odd integers are 

assumed. 

 

An iterated forward transformation is then written as: 

1.1.4. 
B

A
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a

)B);A;a(T(T:)B,A;a(T
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+
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==  of any finite number of parameters 

A,B,... 

 

 

1.2. The backward-transformation C() 

The use of exponential parameters allows then to discuss the reverse operation with the same nota-

tional scheme: 

1.2.1. oddarebanda,b,a
*b

a:a)A;b(C
A

0
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12
>

−
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and 

1.2.2. backward-transformation: 

oddarebanda,b,a
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*b

a:a)A,B;b(C
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==→  

where now the exponential parameters A and B are free parameters even if b is given (though with 

some modular restrictions). 
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1.3. Restrictions on the parameters of T(a;A,B,...,H) 

The exponents A,B,... are restricted by the Collatz-definition and its domain to 

1.3.1. 1<=A,B,C,...  

(but note, that this restriction can easily be omitted, when generalizing the problem into different 

characteritics like allowing negative numbers or different iteration formulae) 

and T() has then the basic characteristic: 

1.3.2. for an exponent A=1 the T()-transformation is ascendent  

1.3.3. for all exponents A>1 the T() - transformation is descendent, 

                               except if a=1 and A=2, where it cycles
1
. 

 

 

1.4. Reformulation of the Collatz-conjecture in terms of T() 

With this notation the Collatz-conjecture for T() is 

1.4.1. For all positive odd integers a there exists a finite set of exponents A,B,C,...Z such that 

 1=)Z,...C,B,A;a(T  

 

and conversely for the backward C()-transformation : 

1.4.2. all a of the domain can be computed by the inverse transformation C() with a finite set  

 of exponents A,B,...Z starting from a=1 

 a)Z,...C,B,A;(C =1  

meaning: each odd integer is constructable by an appropriate set of exponents starting from 1 using 

the iterated C()-transformation. 

 

 

 

o                                                  
1
 Note, that extending the domain to negative integers, we also have a=-1 and A=1 as another cycle and few 

other known cycles using negative a. 
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1.5. A "canonical" form 

An iterated transformation  

 b=T(a;A,B,C,D...H)  

with N terms and the sum  

 S=A+B+C+...+H  

can explicitely be written as: 

1.5.1. 
S
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N
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We could call this a "canonical" form, where the most right term is indepedent of the variable a is 

then 

1.5.3. canonical form of T() 

)H,...,D,C,B,A;(Ta)H,..,D,C,B,A;a(T
S

N

0
2

3
+=  

 

and of the reverse transformation 

1.5.4. canonical form of C() 

)A,B,C,D,...,H;(Ca)A,B,C,D,....,H;a(C
N

S

0
3

2
+=  

and in (1.8) we see, that given a fixed set of exponents, infinitely many a's can be transformed by this 

characteristic transformation T(a; ... ) as far as they have the same residue (mod 2
S
). 

1.6. A view into transformation T() as a bitstring-operation 

The transformation T() can be expressed by a very intriguing bitstring-notation. Since the members of 

a transformation we have for some a the bistring, say "11011001". Then the arithmetic goes 

 a*2    "  110110010" 

 +a     +"   11011001" 

 +1     +"          1"    

 =3a+1  =".1010001100"    

 /2
A     

 =  ".10100011" // just shift right by deleting all trailing zeros 

and the question of arriving at 1 is, whether this mixing of digits and cutting of zeros leads to the bit-

string "1". 
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2. Looking at exponents, elements a,b kept indeterminate: simple observations 

2.1. multitude of solutions according to one residue class (mod 2S) 

Eq. (1.8) says, that given a certain transformation, say: 

2.1.1. b=T(a; A,B,C,D)     where N=4, S=A+B+C+D 

we can find a minimal solution (a1,b1) in terms of a modular class of 2
S
 : 

2.1.2. )D,C,B,A;0(Ta
2

3
b 1S

N

1 +=  

where the canonical transformation T(0;A,B,C,D) is independent of a and defines a unique residue 

class modulo 2
S
.  

The next possible solution a2,b2 in the domain is then the same residue-class: 

2.1.3. 
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N
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N

*aawhere)D,C,B,A;(Tab

)D,C,B,A;(Tab
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and then: 

2.1.4. b2 = b1 + 2*3
N
   a2 = a1 + 2*2

S
  

bk = b1 + 2*(k-1)*3
N     

  ak = a1 + 2*(k-1)*2
S
  

 

Example
1
: 

For instance, for the transformation b=T(a;1,2,3,4) we find after a first solution (a1,b1) infinitely many 

variants (ak,bk) as 

2.1.5. 

 inf..0k

)k2*31k2*211( )ba(

...

 )1632059( )ba(

)111()ba()4,3,2,1;a(Tb

410
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=
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→=→⇒=

 

The term k is needed with cofactor 2, using 2*k , since the result bk must be odd to fall into the do-

main of T().  

 

o                                                  
1
 \\ An example of Pari/GP - code 

\\ ======================================================================== 

\\ finds (rational) T0 from canonical a1 = T(0,[A,B,C,...]) 

T0 (m=[1])= local(lae,a,v); \ 

            lae = matsize(m)[2]; \ 

            a = 0 ; for(k=1,lae, a =(3*a+1)/2^m[k]);  

   return (a); 

\\ finds values a->b for b=T(a;[A,B,C,...])    

\\ if k==1, return this values,  if k>1 return k'th next value 

TFind_ab(v=[1],k=1)=local(t0,d,e,lae,w,a,b); \ 

      t0  = T0(v); d=denominator(t0); e=numerator(t0); lae=length(v); \ 

       w = - e / 3^lae % d; \ 

       a = w; if( T(a,v ) % 2 == 0 , a += d); \ 

       b =(( a + 2*(k-1)* d) * 3^lae + e)/d;  \ 

 return([a,b]) 
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2.2. the construction of a "glide" (Oliveira,Lagarias) of arbitrary length 

With that tool we can construct transformations of arbitrary length, where all intermediate members 

of the transform are a1,a2,a3,...an > a0, (called "glides" for instance in Lagarias): just select appropriate 

exponents. 

 

A sequence of exponents ek containing only 1 and 2, which follows the rule, that in the product 
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all partial products pk>1 can serve as glide-generator.  

For each denominator 2 we choose an exponent 1 and for each denominator 4 an exponent 2:  

 0aa) ... 1,2,2,    1,2,   1,2,  1,2,2,   1,2,   1,2,2,    1,2,   1,2, ,T(aa k0n >⇒=  

  for all k<=n 

which reflects also the convergents of the continued fraction of log(3)/log(2)
1
.  

Thus any length of a glide can be constructed simply by setting exponents, and the smallest pair (a,b) 

satisfying such a glide of a specific length can then be determined by solving the modulus-conditions. 

Note however, that allowing any exponent this does not say, whether there are glides of the same 

length with smaller pair of (a,b), so this method alone does not construct glide-records. I did not inves-

tigate this yet. 

 

 

2.3. An exhaustive separation of the integers into infinitely many classes 

Another curious observation is the following: 

Using a segmentation of the set of positive integers into classes of the following form shows, that for 

each initial value of a a specific first exponent in the transformation is required and the result belongs 

to one of two residues classes (mod 6), though further analyses did not provide useful results. Note 

that the constant terms in structure reflect the two sequences  

 S3: (3,13,53,...(10*4 
k
-1)/3)           and   

 S1:  (1,5,21,...(4 
k
-1)/3, ...) 

whose first T()-transforms are all 5 resp. all 1: 

............

descendingii

descendingii

descendingii

descendingii

descendingii

ascendingii

allowednoti

result
A

onentexp

aof

ucturestr
classnr

166211286

56553645

1645324

56313163

162182

561341

20

++

++

++

++

++

++

−−

 

o                                                  
1
 The relation becomes obvious, if we recursively denote a partial sequence 1,2 as a0, 1,2,2 as b0, then the occur-

ing two types of sequences of a0,b0 as a1,b1 and so on. The lengthes of a0,a1,a2,... reflect then the coefficients 

of the continued fraction of log(3)/log(2).  
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That the given segmentation into classes covers the whole set of positive integers can be shown by 

induction. 

A table-view 

class 0     ▼ 

covering  

0 (mod 2) 
note: class 0 need not be considered in the compressed transformation 

class 2  ▼▼ 

covering  

1 (mod 8) 

 

note: class 2 contains the trivial cycle, 

T(1;2,2...) is neither ▼ ▲ nor  

class 4  ▼▼ 

5 (mod 32) 

 

cl 6 

▼▼ 

 

... 

classes 4..inf 

covering 

5 (mod 16) 

 

 

split (mod 32) 

into: 

 

cl 5..inf 

21 (mod 32) 

cl 5  

▼▼ 

 

classes 2..inf ▼ 

covering  

1 (mod 4) 

 

 

 

 

 

 

 

split (mod 8) 

into: 

 

 

 

▼ (in all split-

groups T() is 

descending) 

classes 3..inf 

covering  

5 (mod 8) 

 

 

split (mod 16) 

into: 

 

class 3   ▼▼ 

covering  

13 (mod 16) 

 

 

classes 0..inf  

covering 

all positive 

numbers 

 

 

 

 

 

 

 

 

 

 

split (mod 2) 

into: 

 

 

 

 

 

classes 1..inf 

covering  

1 (mod 2) 

 

 

 

 

 

 

 

split (mod 4) 

into: 

 

 

 

 

 

class 1     ▲▼ 

covering  

3 (mod 4) 

 note: class 1 is the sole ascending transformation T() 

▼: T() is descending ▼: T()≡1 (mod 6) 

▲: T() is ascending ▼: T()≡5 (mod 6) 

The benefit of this table occurs, if we consider a certain number a, which may be described by a cer-

tain class: 

Say, a = 32 i + 5, then b = 6 i + 1, which is smaller than a because of the common parameter i, and on 

the other hand, b must again have the structure of one of the classes. If it is, for instance, of class 1, so 

b = 4 j + 3, then j>i, and c will be c = 6 j + 5 which is obviously c>b . If then c is of the class 128 k+21 

then d is d=6 k+1 and obviously smaller than c.  

I evaluated such modular transformation-tables for more than one step, so involving (mod 18) instead 

of (mod 6) (considering 2-step-transformations) and (mod 54) (considering 3-step-transformations), 

but with not much new insight: for all possible combinations of transformations one seems to find 

possible candidates, and the Fermat-method of infinite descent, constructing a contradiction seems to 

not work on any level of complexity. 
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3. The cycle-problem: the general cycle 

3.1. Overview; sufficient modular argument not yet found 

For a general transformation, where "general" means here: no special restrictions for the exponents,  

we may write: 

3.1.1. ),...,,,,;( HDCBAaTb =  with N exponents and S=sum of exponents 

For a general cycle b must equal a, this means 

3.1.2. ),...,,,,;( HDCBAaTa =  

Using (1.8) this is 

3.1.3. 

NS

GBAFBABANANN

NS

SS

N

S

N

HDCBAQ
a

HDCBAQ
aHDCBATaa

32

223...23233

32

),...,,,,;0(

2

),...,,,,;0(

2

3
),...,,,,;0(

2

3

......1321

−

+++++
=

−
=

+=+=

+++++++−−−
 

 

From this for a given set of exponents we'll find exactly one solution, which may or may not be in the 

allowed domain of positive odd integers (a might be negative and/or – in most cases – rational). 

 

Note, that A=B=C=...=2 gives a=1 and we have the "trivial" cycle: 

 )...,,,,;(T 222211 =  for arbitrary many exponents 

and allowing negative integers for a we have besides two known others: 

 )...,,,,;(T 111111 −=−  for arbitrary many exponents 

For all greater A with N occurences (N steps) we get rational soultions due to the formula 

 a=T(a;A,A,A,…A) = 
AN

A

ANN

AN

N

a
2

23

23

2

3 −

−

+  

 
ANA

ANN

AN

NAN

a
2)23(

23
)

2

32
(

−

−
=

−
 

Finally 

 1
32

1
≤

−
=

A
a  

 

Modular arguments against a general cycle based on this expression were not found yet, and variants 

of the collatz-problem, say the 5x+1 variant, having the same structure in their canonical expression, 

actually do have cycles in the allowed domain. 
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3.2. Approximation arguments 

But the above formula can be investigated in terms of approximation, and some results, which exclude 

several small lengthes of general cycles are achievable already with this tool. 

Let's write all intermediate steps of a hypothetical cycle a = T(a;A,B,C,D) as  

3.2.1. b=T(a;A), c=T(b;B), d=T(c;C), a = T(d;D) 

Recall their meaning as one-step-transformations: 

3.2.2. 
DCBA

d
a

c
d

b
c

a
b

2

13

2

13

2

13

2

13 +
=

+
=

+
=

+
=  

Multiply to build the trivial product: 

3.2.3. 
DCBA

dcba
bcda

2

13
*

2

13
*

2

13
*

2

13 ++++
=  

 

Rearrange the lhs and the denominators 

3.2.4. 
d

d

c

c

b

b

a

aDCBA 13
*

13
*

13
*

13
2

++++
=+++

 

 

write S = A+B+C+D and cancel: 

3.2.5. 







+








+








+








+=

dcba

S 1
3*

1
3*

1
3*

1
32  

is required to allow a cycle. This formula can easily be extended to any length N. 

 

3.3. Example: disproof of the general-cycle of 2 steps length 

Theorem: 

3.3.1.  A 2-step-cycle cannot exist. 

Assume the contrary. Then, with b = T(a;A); a=T(b;B), S=A+B we must have 

3.3.2. 







+








+=

ba

S 1
3*

1
32  

But the range of results of the rhs are for a,b between their maximum infinity and minimum 1 

3.3.3. 
22

4
1

1
3*

1

1
3

1
3*

1
3

inf

1
3*

inf

1
393 =
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+<








+








+<








+








+==

ba
 

So, for the smallest a,b=1 we had the rhs=16, and for increasing a,b the rhs converges to 9, so the pos-

sible range for the rhs is 9<rhs<=16.  

The only perfect power of 2,  2
S
>9 is 16=2

4
 , so for any a>1 the rhs is nearer to 3

2
 than the lhs (and no 

other solution is possible, so a=1, A=2, and the cycle is already 1=T(1;2).  
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Let's call 

3.3.4. PC2(3
N
) := 2

S
   

        the smallest S'th perfect power of 2 greater than 3
N
  

for the following. 

 

The focus is here the goodness of approximation of rhs to 3
N
, which is empirically much better for 

several N than that of the lhs (the PC2()-expression) , especially with increasing a.  

So the characteristics of the lhs and rhs may contradict and thus may make the inequality (even more 

the final attempted equality) impossible - at least in certain ranges. 

 

 

3.4. Example: disproof of the general cycle of 3 steps length 

Example with N=3: let b=T(a;A), c=T(b;B), a=T(c;C), S=A+B+C. The following equation must be satisfied, 

if a 3-step-cycle exists: 

3.4.1. 







+








+








+=

cba

S 1
3*

1
3*

1
32  

Now for the rhs we have the bounds 

3.4.2. 
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+
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+








+

1

1
3*

1

1
3*

1

1
364..27

inf

1
3*

inf

1
3*

inf

1
3  

or, rewritten, we have some range for the equation 3.4.1: 

   (3 + 0 )(3 +  0 )(3+   0) = 27  //lower bound 

      .... 

 2
S
 = (3+1/a)(3+1/b)(3+1/c) = 32 

      .... 

   (3 + 1 )(3 +  1 )(3+   1) = 64 // upper bound, trivial cycle 

 

and we had two possible solutions, 3
3
<2

S
=2

5
 and 2

S
=64=2

6
. where the latter would again define the 

trivial cycle, which we won't discuss here.  

Here we see, that for N=3 the powerceil-function PC2(3
3
)=32 on the lhs has a good approximation to 

3
N
=27,  so good, that we may find a solution for a,b,c on the rhs, which are possibly in a reasonable 

range. 

So we search for a solution of the only admissible equation 

3.4.3. 32
1

3*
1

3*
1

3 =







+








+








+

cba
  

 

For a first estimate assume first a=b=c then we had 

 (3+1/b)
3
 = 32 = 2

5
  

 (3+1/b) = 2
5/3

  

 1/b = 2
5/3

 - 3 

3.4.4. b = 1/(2
5/3

 - 3) ~ 5.72 

and a should be smaller and c should be greater than b. 
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Although for higher N the following consideration is not of much value, it shows another general rea-

soning about bounds, so I introduce it here: 

Since we want a cycle of different elements, all elements must be odd and cannot be divisible by 3, we 

could choose the smallest possible numbers to insert on the rhs, recalling that this makes the worst 

approximation to 3
N
 so that the PC2()-expression could be a better approximation, which is required 

from the above formula for the existence of a cycle. The smallest possible set of (a,b,c) would be  

 (a,b,c) = (5,7,11)  

and we insert that in the previous formula: 

3.4.5. 086.31~
11

1
3*

7

1
3*

5

1
3 








+








+








+  

which is already a better approximation to 3
N
=27 than the lhs with the PC2(3

N
)-term which were 

PC2(3
3
)=32 .  

So for even the smallest possible selection for a,b,c the inequality 

 [ ] 







+








+








+=≤

c

1
3*

b

1
3*

a

1
32)3(PC

S3

2  

cannot be satisfied since actually 

3.4.6. [ ] 







+








+








+>≤

cba
PC

S 1
3*

1
3*

1
32)3(

3

2 )11c,7b,5a(allfor ≥≥≥  

 

 

This way of arguing is the core of the following:  

the (generally) bad approximation of 2
S
 (or more precisely PC2(3

N
)) to 3

N
 compared to the prod-

uct in the rhs, especially, if the values of the elements of the projected cycle are known to be 

high for other reasons (for instance a,b,c>2
58

 because of computational checks) prevents the 

existence of many projected cycles. 

 

From here we can derive some general conditions, which the exponents and/or the members of a 

cycle must allow. First observe 

 1) the product of the parentheses at rhs P(N) will not exceed 4
N

 ,  

  it equals 4
N

 if all members a,b,c,...=1  

 2) the product P(N) will be greater than 3
N

. 

then the following conditions must be satisfied by selection of exponents or members: 

 3) the product P(N) must be a perfect power of 2 >= PC2(3
N
) 

 4) the sum S of exponents cannnot be arbitrarily constructed  

  but is bounded by log(3)/log(2)<S/N<2 

 

 to allow a cycle in the collatz-problem. 

Since P(N) must be a perfect power of 2 and must be greater than 3
N
, its minimal value must be equal 

or greater than PC2(3
N
) (= powerceil2(3

N
)), which means the next perfect power 2

S
 greater than 3

N
 ) 
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3.5. Generalization, the critical inequality for general cycles 

We can restate the formula using this bounds, where the obvious generalization from the 3-step-

example to the N-step is made: 

Critical inequality for the general cycle (complete form): 

3.5.1. 
N

N

k k

SNN

a
)(PC 4

1
3232

1

2
<







+=≤< ∏

=

 

where the "critical condition" in the view of approximation is the less or equal -relation with the prod-

uct only: 

Critical inequality for the general cycle (short form): 

3.5.2. ∏
=









+=≤

N
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which -if it cannot be satified using a certain length N- excludes the possibility of a cycle of this length.  

See for instance the excerpt of a table for N=1 to 200 which is fully documented in Appendix 1. For 

ease of documentation the formula is normed by the 3
N
-term so we have 
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and restated 

3.5.4. ratio = 1

a3
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    to make a cycle possible from approximation arguments 

 ratio = 1

a3

1
13

)3(PC*2
N

1k k

N
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    to actually establish a cycle with some integer h>=0  

 

 

a1 is taken as smallest element a1=5  

all following elements ak are taken as the next possible odd integer, 6i+1 or 6i-1 

 

 

The following table lists results for the tests for general cycles for lengthes up to N=200 . 

 

N:= cyclelength 

ug:=  PC2(3
N
)/3

N
  

prod:=  (3+1/a1)(3+1/a2).../3
N
  

ratio:=  ug/prod must be <=1 to make this cycle possible by satisfying 

          the critical equation 
 

    n    PC2(3N)/3N        prod         ratio       ug < prod: 
                                                   cycle can exist 
------------------------------------------------------------ 
    1    1.333333     1.066667     1.250000     -false-  
    2    1.777778     1.117460     1.590909     -false-  
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    3    1.185185     1.151323     1.029412     -false-  
    4    1.580247     1.180844     1.338235     -false-  
    5    1.053498     1.203998     0.875000             
    6    1.404664     1.225120     1.146552     -false-  
    7    1.872885     1.242876     1.506897     -false-  
    8    1.248590     1.259447     0.991379             
    9    1.664787     1.273924     1.306818     -false-  
(...) 
  195    1.908332     1.772149     1.076846     -false-  
  196    1.272221     1.773152     0.717492             
  197    1.696295     1.774149     0.956118             
  198    1.130864     1.775143     0.637055             
  199    1.507818     1.776130     0.848934             
  200    1.005212     1.777116     0.565642             

 

 

The twofold value of this formula is,  

for small N: empirically the product is far nearer to the N'th power of 3 than the appropriate 

powerceil2-function and this condition for a general cycle can easily be verified for a sample of 

small lengthes N. 

for high values of a: the approximation of the product P(N) to 3
N

 is extremely good, far too good 

to be worse than the PC2()-approximation for small N. Knowing from empirical research that no 

a<2
58

 is actually a member of a cycle, we can estimate, up to which N no general cycle can exist. 

3.6. Lower bounds for N, given a minimal member a of a cycle. 

Assume the (unrealistic) assumption for the menbers of the hypothesized cycle, that they all are in the 

range a, a+2,a+k*2,...a+2*n+d where also the numbers a+k*2 == 0 (mod 3) are excluded and d reflects 

the overhead given by this additional restriction, then we have according to 
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and to have a rough generous limit let's set all ak=a=2
58

, (where our additional assumption gives then 

bounds for an unrealistically short cycle), then we have (or: is required) 
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ln(3) is about 1.098 and approximating it with 1 increases the bound at the rhs, thus makes it again 

easier for a cycle to exist. So we have to satisfy, with a certain N at least the bound: 
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From empirical evaluation of the continued fraction of log(3)/log(2) we find that even the best ap-

proximations in the lhs of the above equation actually are poor. Empirically I got (best approximation 

depending on N), using the convergents of the continued fractions for N up to ~10
19

, best approxima-

tions of about 1/N to 1 by PC2(3
N
)/3

N
 : 

 24  1.00000000000000010635580339  0.99999999999999999477187338 

     2^9115015689657667            2^9881527843552324       

     ------------------            ------------------       

     3^5750934602875680            3^6234549927241963       

  

 25  1.00000000000000000179327108  0.99999999999999999656514447 

     2^206745572560704147          2^216627100404256471     

     --------------------          --------------------     

     3^130441933147714940          3^136676483074956903     

  

 26  1.00000000000000000015168663  0.99999999999999999835841555 

     2^630118245525664765          2^423372672964960618     

     --------------------          --------------------     

     3^397560349370386783          3^267118416222671843     

  

 27  1.00000000000000000002696849  0.99999999999999999987528186 

     2^7354673373747273033         2^6724555128221608268    

     ---------------------         ---------------------    

     3^4640282259296926456         3^4242721909926539673    

  

 28  1.00000000000000000001012431  0.99999999999999999998315582 

     2^43497921996957973433        2^36143248623210700400   

     ----------------------        ----------------------   

     3^27444133206411171953        3^22803850947114245497   

 29  1.00000000000000000000340444  0.99999999999999999999328013 

     2^123139092617126647266       2^79641170620168673833   

     -----------------------       ----------------------   

     3^77692117359936589403        3^50247984153525417450   

 

A guess, which is a lower bound for the remaining fraction as function of N, based on plots of this ap-

proximations is the following: 
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taking logarithms this is 
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so the lhs in the above equation must be smaller than the rhs in the equation before and we get for N 

a lower bound: 

3.6.4. 
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Taking the lhs and rhs only we get a rough estimate for N: 

3.6.5. eps
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Numerical computation says then that by 
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the length of a cycle must be at least N=76 260 075, or N> 1.14*2^26 or N> 1.77*3^16 or N> 

7.63*10^7 to allow a general cycle. The minimal length of a general cycle given at eq 2.26 in [lagarias] 

is N>275000=2.75 *10
5
 based on the assumption of a>=2

40
 ; my formula gives N>182317 for this. 

 

 

3.7. A loose end here 

For the derivation of this formula I assumed the unrealistic structure of the cycle, that all members ak 

equal a0 ; actually they must all be greater and also at least increasing by 2 or 4, depending on the 

forbidden numbers divisible by 3. So for an assumed cycle of length N=10
8
 the last member an-1 is in 

fact at least about an ~ a0+3* 10
8
 and the rhs of the critical equation decreases again by something 

according to the new estimated formula 
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and taking logarithms this is 

3.7.2. 
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Generally the given fomula has its value in allowing the following formulation: 

without loss of generality a can be assumed to be the smallest element of the cycle. 

If the critical condition cannot be satisfied for a certain a, then no higher a can satisfy the critical con-

dition. 

This theorem allows to exclude all search for greater a once for a certain a this hypothetic cycle was 

disproven - so we don't need to look at a+2, if the condition is already not satisfied for a. 
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4. The primitive cycle ("1-cycle" [Simons/deWeger], "circuit" [Steiner]) 

4.1. Definitions 

With the considerations of the previous chapter it was not possible to exclude the possibility of a gen-

eral cycle finally, but at least one finds an estimate for a lower bound for the length, depending on the 

value of its smallest number a0. 

To simplify things one could next look at cycles of special forms; the most primitive the one, which has 

only ascending steps and then one single descending step. One may call such a cycle a "1-peak-cycle". 

Such a cycle has the form: 

4.1.1. )A,,..,,;a(Ta 1111=  with length N, N-1 ones and S=N-1+A 

Before studying the 1-peak-cycle let's introduce some more convenient notations. 

Write a "1-peak-transformation", not necessarily forming a cycle: 

4.1.2. ),1,..1,1,1;(:):;( AaTbANaPT ==   

 with length N, the first N-1exponents being 1 and S=N-1+A 

Write concatenations of several such "1-peak-transformations" as "m-peak-transformation": 

4.1.3. ),A:N,...A:N,A:N;a(PTb mm2211
=   

 with overall length N=N1+N2+...+Nm , S=(N - m)+A1+A2+...Am  

and a "m-peak-cycle" then equalling b=a: 

4.1.4. )A:N,...A:N,A:N;a(PTa mm2211
=   

It is obvious, that any general cycle can be understood as a "m-peak-cycle" where possibly some of the 

partial "1-peak-transformations" are allowed to be degenerate, meaning they have the length 1 and 

only one exponent A>1.  

This type of cycle was also studied by several researchers; using the notation "1-cycle" and "m-cycle" 

and indeed for this type of cycles definitive results could be proven: 

*   There is no 1-cycle of any length except the trivial one (Ray Steiner, 1978) 

*   There is no 2-cycle of any length (John Simons, 1996) 

*   There are no 3..68-cycles (Benne de Weger/John Simons, 2002) 

*   several m>68 m-cycles are also excluded (by similar approximation arguments to mine)  

 (deWeger/Simons, 2002) 

We shall see, that the "critical equation", as stated in the chapter about the general cycle provides 

sharp bounds, which cannot be satisfied by the quality of approximation of PC2(3
N
)/3

N
.(and an inter-

esting relation to a still open detail in the problem of sums of like powers by E.Waring 
1
 occurs). 

The canonical form of a 1-peak-cycle/1-cycle is: 

4.1.5. 
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o                                                  
1
 (see mathworld, mentioned in the entry powerfraction) 
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This transformation can be separated into two steps: an only-ascending step, involving only the 1-

exponents, and the final step involving the A-exponent. 

Rewritten using L=N-1 this is: 

4.1.6. 
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The structure of b and a from the first of these equations can be written in terms of a common free 

parameter k. First rearrange: 

4.1.7. 
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and from this follows, that the numerators must be equal multiples, say k'th multiples,  of their de-

nominators and must be described by: 

4.1.8. 12*13* −=−= LL kakb  

check that this gives the required identity: 

 

kk

kk
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L

L

L
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+−
=

+−

2

1)12*(

3

1)13*(

 

Moreover, since b must be odd, k must be even and the first theorem for 1-peak-transformations is 

4.1.9. Given a 1-peak-transformation b=PT(a;L:1) then it follows for a and b, that 

  a = k*2*2
L
 - 1     and   

  b = k*2*3
L
 - 1 

This also means that the intermediate members of the purely ascending part of a 1-peak-

transformation are 

4.1.10. (a0 , a1 ,a2 ,...aL )=2*k* ( 2
L
  ,   2

L-1
*3

1
,    2

L-2
*3

2
,   ...   ,   3

L
  ) - 1 

So for a three-step-transformation b=T(a;1,1,1) we have L=3 and the first three solutions  

 (k=0; (a0,  a1,  a2,  a3 )= 0 (8 , 12, 18, 27.) - 1 = (-1,-1,-1,-1) --- not in the domain) 

  k=1; (a0,  a1,  a2,  a3 )= 2 (8 , 12, 18, 27.) - 1 = (15, 23, 35, 53) 

  k=2; (a0,  a1,  a2,  a3 )= 4 (8 , 12, 18, 27.) - 1 = (31, 47, 71, 107) 

 

 

To form a 1-peak-cycle, a single descending transformation with exponent A>1 must be appended. 

 )A;b(Ta =  

since b=2k*3
L 
- 1 the structure of a must then also be: 

4.1.11. 
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Here again occurs, that k must be odd such that the numerator is divisible by the denominator and we 

can complete the description of the structure of a: 

4.1.12. 

1
2

13

12
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A

N

N

*k
a

*ka

simultaneously, k odd, >0 

 

From here the critical equation for the 1-peak-cycle can be derived: 

by equalling both structure-descriptions of a: 

4.1.13. 
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N
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*k  

and finally to allow a 1-peak-cycle, we need a length N of the cycle, such with a free odd positive pa-

rameter k and A>1 the following equality holds: 

4.1.14. 
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N

N
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*k

*k
 A>1,  k odd >0 

It is interesting, that k cannot even be 1 in this formula.  

Proof: The term 3
N
-1 contains powers of 2 in a systematic form; if N is odd, then always A=2; but 

A must also be related to N by A~ N*(log(3)/log(2)-1), so for odd N there is no further solution 

except one (A=2, N=1, a=1), which describes the "trivial cycle".  

So, for a second solution, N must be even. But then in the denominator the form 2
N
-1 contains 

the primefactor 3, but the numerator does systematically not, and we get a noninteger result for 

all N=/=1  

To relate this result to the critical inequality for general cycles note, that for a 1-peak-cycle the trans-

formation is a=PT(a;N:A), thus S=N-1+A = N*(A-1) and multiplying with 2
N
 gives: 

4.1.15. 
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and finally it must be solvable for N,S and a free parameter k>0, odd, 

4.1.16. 
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4.2. A short analysis of the approximation using a table of irregular fractions 

Let's discuss the equation 4.1.14  

4.2.1. 
12

13
2

1

−

−
=−

N

N
A

*k

*k
 A>1,  k odd >0 

where heuristics show, that the lhs are always greater than the lhs, and we may formulate as a pro-

posal, which denies the possibility of a primitive cycle: 

conjecture: 

4.2.2. 
12*k

13*k
2

N

N
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−

−
>−

 A>1,  k odd >0 

First observe the bounds for the rhs in terms of k: 

4.2.3. 
1
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for  k->inf , k , k=0 respectively. Since it is required that k>0, the smallest rhs in 4.2.2  

We may build a table for the empirical values of the middle term. Let's denote  
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d  the integer and fractional part,k ->oo 

 d = min(dk), and the fractional part possibly nonregular if there exists one pair dk<>dj 

The table below focuses the question, whether the (irregular) fractional part can become integer (or 

zero), given integer d. Here increasing N define the rows and increasing k define the columns. The digit 

d is taken out of each entry, because empirically occurs, that it doesn't change when k varies from 1 to 

infinity. Also the entry for k=0 was inserted, however as irregular fraction with negative fractional part 

to have the same d: 

 

.........

75

54

33

22

11

...6543210kdN

32

19

191

120

159

101

127

82

95

63

63

44

31

25

1

6

16

1

95

10

79

9

63

8

47

7

31

6

15

5

1

4

8

3

37

20

39

17

31

14

23

11

15

8

7

5

1

2

4

1

23

7

19

6

15

5

11

4

7

3

3

2

1

1

2

1

11

6

9

5

7

4

5

3

3

2

1

1

1

0

−

−

−

−

−

+

+

+

+

+

∞=

 

The proof of R.Steiner
1
 that there is no 1-peak-cycle, was successful by proving that the approximation 

of the rhs in 4.2.1) has a certain bad degree and thus an integer-solution is not possible - which means 

translated to the following table, that d plus the fractional part p/q is never a power of 2 (which could 

also only happen if the fractional part p/q degenerates to become integer)  

 

 

o                                                  
1
 personal communication, see Sec. 5.3 
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Already in this small snippet one can nicely see, that  

a) the progression of numerators and denominators are indicated by the inf-term 

b) d=dk for k>0 and N>1, so we don't have an irregular fraction crossing an integer for k>0 

If b) can be shown to be valid for all N, then the 1-peak-cycle is also disproven. 

It might be of interest to plot a graph with interpolated k. Such graph exhibits empirically that the 

crossing of an integer occurs only between 0<k<1.
1
  

When plotting this interpolated table for the 3x+1-problem, moreover allowing also negative k, then 

we find integer crossing in the negative domain, and also the 1-peak-cycle residing there. 
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Crossover-points exist only for 0<k<1

 

 

The reason, that there are no integer-crossings for k>=1 depends on the numerator-value p=poo of the 

fraction for k->oo. Since it is by construction p0 = d - 1 , for to have no integer crossings we need, that 

p0+k*poo<-1+k*qoo  or p0+1 < k * (qoo-poo). or  d < k * (qoo-poo)  , which - if it is already true for k=1 - is 

obviously true for all k>1 . For k=1 the last expression is 

 d < 1 (qoo-poo) 

 d+poo < qoo   

or, using the expressions for 3x+1, this means for any row N 
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o                                                  
1
 A property which is special to the 3x+1-question. Other parameters, ax+b may have such crossings also in the 

table, and also having appropriate numbers in d, so that a 1-peak-cycle is possible with such parameters (see 

some examples in the appendix at 5.2) 
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and for large N: we can formulate: 

a: if 
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  then there is no 1-peak-cycle for large N. 

 

This can be rewritten in two ways: 

b: if 
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c: or if 
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  then there is no 1-peak-cycle for large N. 

Formulation c) occurs in a sharper conjecture  

c.1: For N>2 we have 
N

N

N

N

4

3
1
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in a detail of the Waring-problem   

(see mathworld/powerfrac http://mathworld.wolfram.com/PowerFractionalParts.html )   

where it is mentioned, that this detail is not yet solved, nevertheless assumed to be true.  

But if it is true, then also c) is true and the 1-peak-cycle is not possible due to missing crossing-points 

in the above table.  

Kurt Mahler approached the same problem in terms of his z-numbers, and was able to prove, that at 

most finitely many z-numbers, and thus solutions for c.1, can exist. 

 

The above table seems to be a useful type of display. In the appendix I have documented similar tables 

for Collatz-like problem using different parameters, so (5x+1)/2 , (5x+1)/3, (11x+1)/2, (11x+1)/3. There 

are crossing points for some of these versions and thus cycles in that problem-configurations cannot 

be excluded by the investigated properties here. 
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4.3. Concatenated m-peak-cycles -> general cycle  

(much more material needs to be inserted; so far only a sketch:) 

The discussion is a simple generalization of the previous. Assume two "primitive transformations" 

(each single one not being a cycle): 

 b=PT(a;N1:A)  a = PT(b;N2:B) 

then we know a structural description for a and b from the earlier discussion of b=PT(a;N1:A) 
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and as well for a and b by the second transformation a=PT(b;N2:B) 
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which must also agree (be simultaneously true). Then we can again build the trivial equation of the 

products 
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and also, by rotating denominators 
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Here in 1. each parenthese must be a perfect power of 2 , which imposes restrictions on j and k for 

modular reasons (for instance the two most simple ones: both must be odd, if they are simultaneously 

1 they form the trivial cycle) 

In 2. we recognize, that increasing k (resp j) decreases the parentheses down to a perfect power of 3/2 

which is always noninteger. The clue here were that we want to be able to show, that they also do not 

cross an integer bound while increasing k from 1 to infinity. But this is open to be proved… 

It is obviously generalizable to any number of partial primitive transformations ("m-cycles"). Note, that 

based on the form 2. only, Simons/deWeger could show, that up to 72 concatenations there is no such 

m-cycle. He also showed that -by increasing the number m of partial cycles- the limit condition be-

comes too weak for the disprove, and integer-crossings cannot be excluded. Here a reintroduction of 

the modular arguments in the form of 1. might be helpful (each term in 1. must be a perfect power of 

2) 

4.4. Some loose ends 

(not yet inserted) 
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5. Appendix 

5.1. Approximation table for the (3x+1)/2 -problem 

The following table lists results for the tests for general cycles for lengthes up to N=200 . 

N:= cyclelength 

ug:=  powerceil2(3)/3^N  

prod:=  (3+1/a)(3+1/b).../3^N 

ratio:=  ug/prod must be <=1 to make this cycle possible by satisfying 

          the critical equation 
 

    n    ug               prod          ug/prod    ug <= prod: 
                                                   cycle can exist 
------------------------------------------------------------ 
    1    1.333333     1.066667     1.250000     -false-  
    2    1.777778     1.117460     1.590909     -false-  
    3    1.185185     1.151323     1.029412     -false-  
    4    1.580247     1.180844     1.338235     -false-  
    5    1.053498     1.203998     0.875000             
    6    1.404664     1.225120     1.146552     -false-  
    7    1.872885     1.242876     1.506897     -false-  
    8    1.248590     1.259447     0.991379             
    9    1.664787     1.273924     1.306818     -false-  
   10    1.109858     1.287622     0.861944             
   11    1.479811     1.299885     1.138416     -false-  
   12    1.973081     1.311596     1.504336     -false-  
   13    1.315387     1.322259     0.994803             
   14    1.753850     1.332509     1.316201     -false-  
   15    1.169233     1.341960     0.871288             
   16    1.558977     1.351089     1.153868     -false-  
   17    1.039318     1.359586     0.764437             
   18    1.385758     1.367826     1.013110     -false-  
   19    1.847677     1.375554     1.343224     -false-  
   20    1.231785     1.383070     0.890616             
   21    1.642379     1.390163     1.181429     -false-  
   22    1.094920     1.397079     0.783720             
   23    1.459893     1.403638     1.040078     -false-  
   24    1.946524     1.410048     1.380467     -false-  
   25    1.297683     1.416152     0.916344             
   26    1.730243     1.422127     1.216659     -false-  
   27    1.153496     1.427838     0.807861             
   28    1.537994     1.433438     1.072941     -false-  
   29    1.025329     1.438807     0.712625             
   30    1.367106     1.444077     0.946699             
   31    1.822808     1.449144     1.257852     -false-  
   32    1.215205     1.454124     0.835696             
   33    1.620274     1.458923     1.110596     -false-  
   34    1.080182     1.463644     0.738009             
   35    1.440243     1.468204     0.980956             
   36    1.920324     1.472694     1.303954     -false-  
   37    1.280216     1.477038     0.866746             
   38    1.706955     1.481319     1.152321     -false-  
   39    1.137970     1.485469     0.766068             
   40    1.517293     1.489561     1.018618     -false-  
   41    1.011529     1.493533     0.677273             
   42    1.348705     1.497453     0.900666             
   43    1.798274     1.501263     1.197840     -false-  
   44    1.198849     1.505026     0.796564             
   45    1.598465     1.508688     1.059507     -false-  
   46    1.065644     1.512306     0.704648             
   47    1.420858     1.515831     0.937346             
   48    1.894477     1.519316     1.246928     -false-  
   49    1.262985     1.522714     0.829430             
   50    1.683980     1.526076     1.103471     -false-  
   51    1.122653     1.529358     0.734068             
   52    1.496871     1.532605     0.976684             
   53    1.995828     1.535778     1.299555     -false-  
   54    1.330552     1.538919     0.864602             
   55    1.774069     1.541990     1.150506     -false-  
   56    1.182713     1.545032     0.765494             
   57    1.576951     1.548009     1.018696     -false-  
   58    1.051300     1.550957     0.677840             
   59    1.401734     1.553845     0.902106             
   60    1.868978     1.556707     1.200598     -false-  
   61    1.245986     1.559512     0.798959             
   62    1.661314     1.562292     1.063383     -false-  
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   63    1.107543     1.565018     0.707687             
   64    1.476724     1.567721     0.941956             
   65    1.968965     1.570374     1.253819     -false-  
   66    1.312643     1.573004     0.834482             
   67    1.750191     1.575587     1.110818     -false-  
   68    1.166794     1.578149     0.739343             
   69    1.555725     1.580666     0.984221             
   70    1.037150     1.583163     0.655113             
   71    1.382867     1.585618     0.872131             
   72    1.843823     1.588053     1.161058     -false-  
   73    1.229215     1.590449     0.772873             
   74    1.638954     1.592826     1.028960     -false-  
   75    1.092636     1.595165     0.684967             
   76    1.456848     1.597487     0.911962             
   77    1.942463     1.599772     1.214212     -false-  
   78    1.294976     1.602041     0.808328             
   79    1.726634     1.604276     1.076270     -false-  
   80    1.151089     1.606495     0.716522             
   81    1.534786     1.608680     0.954065             
   82    1.023191     1.610851     0.635186             
   83    1.364254     1.612991     0.845792             
   84    1.819006     1.615116     1.126238     -false-  
   85    1.212670     1.617211     0.749853             
   86    1.616894     1.619292     0.998519             
   87    1.077929     1.621344     0.664837             
   88    1.437239     1.623384     0.885335             
   89    1.916319     1.625395     1.178986     -false-  
   90    1.277546     1.627395     0.785025             
   91    1.703394     1.629367     1.045433     -false-  
   92    1.135596     1.631328     0.696118             
   93    1.514128     1.633263     0.927057             
   94    1.009419     1.635187     0.617311             
   95    1.345892     1.637086     0.822126             
   96    1.794522     1.638974     1.094906     -false-  
   97    1.196348     1.640839     0.729108             
   98    1.595131     1.642693     0.971046             
   99    1.063421     1.644524     0.646643             
  100    1.417894     1.646345     0.861237             
  101    1.890526     1.648145     1.147063     -false-  
  102    1.260350     1.649934     0.763879             
  103    1.680467     1.651703     1.017415     -false-  
  104    1.120311     1.653462     0.677555             
  105    1.493749     1.655200     0.902458             
  106    1.991665     1.656930     1.202021     -false-  
  107    1.327777     1.658640     0.800521             
  108    1.770369     1.660341     1.066268     -false-  
  109    1.180246     1.662023     0.710126             
  110    1.573661     1.663697     0.945882             
  111    1.049107     1.665352     0.629961             
  112    1.398810     1.667000     0.839118             
  113    1.865080     1.668629     1.117732     -false-  
  114    1.243387     1.670251     0.744431             
  115    1.657849     1.671855     0.991622             
  116    1.105233     1.673452     0.660451             
  117    1.473643     1.675032     0.879770             
  118    1.964858     1.676605     1.171927     -false-  
  119    1.309905     1.678162     0.780560             
  120    1.746540     1.679711     1.039786     -false-  
  121    1.164360     1.681245     0.692558             
  122    1.552480     1.682772     0.922573             
  123    1.034987     1.684284     0.614497             
  124    1.379982     1.685789     0.818597             
  125    1.839977     1.687280     1.090499     -false-  
  126    1.226651     1.688764     0.726360             
  127    1.635535     1.690234     0.967638             
  128    1.090356     1.691697     0.644534             
  129    1.453809     1.693147     0.858643             
  130    1.938412     1.694590     1.143882     -false-  
  131    1.292274     1.696020     0.761945             
  132    1.723032     1.697444     1.015075     -false-  
  133    1.148688     1.698855     0.676154             
  134    1.531584     1.700260     0.900794             
  135    1.021056     1.701653     0.600038             
  136    1.361408     1.703040     0.799399             
  137    1.815211     1.704414     1.065006     -false-  
  138    1.210141     1.705783     0.709434             
  139    1.613521     1.707140     0.945160             
  140    1.075681     1.708492     0.629608             
  141    1.434241     1.709832     0.838820             
  142    1.912321     1.711167     1.117554     -false-  
  143    1.274881     1.712490     0.744460             
  144    1.699841     1.713808     0.991850             
  145    1.133227     1.715116     0.660729             
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  146    1.510970     1.716418     0.880304             
  147    1.007313     1.717709     0.586428             
  148    1.343084     1.718996     0.781319             
  149    1.790779     1.720272     1.040986     -false-  
  150    1.193853     1.721544     0.693478             
  151    1.591804     1.722805     0.923960             
  152    1.061202     1.724062     0.615525             
  153    1.414937     1.725308     0.820107             
  154    1.886582     1.726550     1.092689     -false-  
  155    1.257721     1.727783     0.727940             
  156    1.676962     1.729011     0.969897             
  157    1.117975     1.730229     0.646143             
  158    1.490633     1.731443     0.860919             
  159    1.987510     1.732648     1.147094     -false-  
  160    1.325007     1.733849     0.764200             
  161    1.766676     1.735041     1.018233     -false-  
  162    1.177784     1.736228     0.678358             
  163    1.570379     1.737407     0.903863             
  164    1.046919     1.738582     0.602168             
  165    1.395892     1.739748     0.802353             
  166    1.861189     1.740910     1.069090     -false-  
  167    1.240793     1.742063     0.712255             
  168    1.654391     1.743213     0.949047             
  169    1.102927     1.744355     0.632284             
  170    1.470569     1.745493     0.842495             
  171    1.960759     1.746623     1.122600     -false-  
  172    1.307173     1.747749     0.747918             
  173    1.742897     1.748867     0.996586             
  174    1.161931     1.749982     0.663968             
  175    1.549242     1.751088     0.884731             
  176    1.032828     1.752192     0.589449             
  177    1.377104     1.753288     0.785441             
  178    1.836138     1.754380     1.046602     -false-  
  179    1.224092     1.755465     0.697304             
  180    1.632123     1.756547     0.929166             
  181    1.088082     1.757621     0.619065             
  182    1.450776     1.758692     0.824918             
  183    1.934368     1.759756     1.099225     -false-  
  184    1.289579     1.760817     0.732375             
  185    1.719438     1.761870     0.975916             
  186    1.146292     1.762921     0.650223             
  187    1.528390     1.763965     0.866451             
  188    1.018926     1.765005     0.577294             
  189    1.358569     1.766039     0.769274             
  190    1.811425     1.767070     1.025100     -false-  
  191    1.207616     1.768095     0.683004             
  192    1.610155     1.769116     0.910147             
  193    1.073437     1.770131     0.606417             
  194    1.431249     1.771143     0.808093             
  195    1.908332     1.772149     1.076846     -false-  
  196    1.272221     1.773152     0.717492             
  197    1.696295     1.774149     0.956118             
  198    1.130864     1.775143     0.637055             
  199    1.507818     1.776130     0.848934             
  200    1.005212     1.777116     0.565642             
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5.2. Residual tables for other problem-parameters 

The red lines mark the cross-over-points, which -if are integer- allow an 1-cycle for that parameters (if 

some other conditions are also met, but this is not the focus of these tables). The leading integer of a 

row is the integral part of (3
n
*i - 1)/(2

n
*i-1) and the following fractions the respective fractional parts 

for i>=0, where n refers to the n'th row. 
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5.3. Paraphrase of the Steiner-proof of 1977 

[Steiner]:  

Briefly, my 1977 proof runs as follows. I will just give the steps, not the details here. 

 

1). Any circuit for the 3x+1 problem corresponds to an integer solution k, l, h, of the Diophantine equa-

tion 

 (2
k+l

 - 3
k
) h = 2

l
 - 1              (*) 

2) To show that the only integer solution of (*) is 1,1,1. 

 

First, reduce this to a problem in linear forms in logarithms: 

 0 < | l/k - log2 3/2| < 1/(k*ln 2 * (2
k
 - 1) ) 

3). This shows that if k >4 then l/k must be a convergent in the continued fraction expansion of log2 

(3/2)  . 

4). By using a lemma of LEGENDRE, one can prove that a partial quotient of this CF must exceed 10
4690

. 

5). Using BAKER'S, or RHIN'S theorem one finds a reasonable upper bound for k and the denominators of 

all convergents in this range are all smaller than 2500. 

 

The Steiner-formula is identical to my critical condition for 1-peak-cycles, by few rearrangements. 

First, to relate variables of his formula (*) and of mine (4.1.14), I translate: 

 (h,l,k) ->(k, A-1, N) 

Then  
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