Cycles in generalizations of the type 3-x+r (r odd) Gottfried Helms, 3.9.2017

Abstract

A systematic search for cycles in the generalized 3x+r - problem exhibits some nice heuristical pattern, which I
try to formalize here. The reader can find more formal and extensive consideration of this in Crandall's 1978
[Cra78], Lagarias' 1990 [Lag90] and Belaga's 2007 [Bel07] articles.

Preliminaries and notation

General transformation of one and of N steps

Let's denote one step of transformation from odd ax to odd ax.: in the Syracuse-style by
11)  aws = (Bak+1)/2%,

When iterated to N steps (writing S for the sum of all Ax) then the complete transformation can algebraically be expanded as
12) awa=ar3" /2 # 1o (3N 4 3N2 DA 4 N3 DAtz 4y pAttANs) /DS

Much interestingly, the parameter r can be brought outside of the parenthese. The parenthese itself should thus be seen as some "ca-
nonical” or "basic” composition over all the following discussion. Thus we introduce a short form Q() for writing the parenthese ex-
pression by the vector of exponents only:

1.3) QA1 Az .., Av]) = (3N1+3N2 2414 3N3 pArtdz 4 4 pAt-4Av1)
such that 1.2) assumes the shorter form
14) aya=as3V /25 +r-Q(Ay Az, ..., Av]) /25
Let's give such vector an even shorter reference (although that shorter reference is formally underdetermined)
1.5) Ens=[A1 Az .., An]
such that in general we can write
1.6) ayi=a;3" /25 +r-Q(Ens) /25 for the general N-fold iterated transformation
Let's give such transformation a symbolic name using letter T with suffix for the parameter r:

1.7)  an+ =T.(as; [A1, Az ..., AN ])

=T{(ai;Ens)
Cycling
If we assume that this transformation defines a cycle for some a;, meaning that ay.; = as, then we can reformulate
18) a =T:(ay Ens)
a; = a3V /25 +r-Q(Ens) /25 for the definition of a cycle by Ens which occurs if a; is positive integer
aip '25 = 01'3N +r- Q(EN,s)
ar (25-3Y) = r-Q(Ens)
1.8a) a; = r-Q(Ens) /(25-3") for the computation of the first element a; of a cycle given the exponents Ax

For the classic Collatz-problem the parameter is r=1 and we know, that all a;<2% converge to 1 so the cycle at a;=1 is likely the only
one.

The Collatz-conjecture for the case r=1 assumes that all positive integers a; fall down to the "trivial cycle" 1->1->... when iteratively
transformed by T;(). That conjecture can be separated into two partial conjectures:

the no-divergence-conjecture meaning that there exist no divergent trajectories.

the (no-nontrivial-) cycle-conjecture meaning that there are no cycles besides the trivial one
(sometimes called "weak Collatz conjecture")

In the following we assume the truth of the Collatz-cycle-conjecture - such that the trivial cycle at a;=1 and A;=2 is the only one.
A formula for the "trivial cycle" is from definition (1.1)
19)  ai=(3a:+1)/2*

solving

a:24-3a;=1

ar=(1)/(2*-3)

allows the only possible solution having A=2 to get the positive integer a;=1 (A=1 would lead to a;=-1 instead)

1= (1)/(2*-3)

or, including explicitely the term for r=1 and the Q()-notation with N=1 and S=A=2,

1=1-Q([2]) / (2*-31) =1-Q([2.2]) / (2*-39) =1-Q([2.2.2]) / (2°-3%) =
=1-(39)/(2%-3")
=1/1

The assumption of the truth of the Collatz-cycle-conjecture can be reformulated such that in (1.8a) with r=1 no other positive integer
solution for a; can be found, irrespectively of the number N and of the values of the exponents Ay

Collatz-cycles conjecture: in (8.d) the only solution for a;>0 and r=1 and any N for
1.10) a;=1-Q([A1 Az As, .., Av ]) /(25 - 3Y)

is
a;=1 and A;=Az=..=Ax=2 (and thus S=2-N)
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Insight in the generalized transformation 3x+r concerning cycles
The generalized trivial cycles
The first insight into the generalization with arbitrary odd parameter r is that from eq (1.8a) with N=1 and 5=2
ar=r-(3/(2*-3")  [=r-1]
it follows immediately that we have a trivial-cycle-solution at a;=r:

21) ri=r(39/(2*-3")

==> a;=r allows the generalized "trivial” cycle for any r
The generalized non-trivial cycles

The next insight: for the non-trivial case we start at our form (1.8a)

22)  a; =r-Q(Ens)/(25-3Y)
= r-Q([A1, Az, .. A]) /(25 - 3V)

We denote the cancelled form of Q( Exs) /(2° - 3") by the rational number "p/q" writing:
22a) ar =r-(p/q)

Although (we assume that) in the Collatz-cycle-problem with r=1 there is no nontrivial solution for this, it is obvious that we need only
that r is some multiple of g to have a solution for this cycle equation in integer a;. Let r be any multiple of g, say r=tq, then

2.2b) ar =tq-(p/q)
a; =tp ===> a; =tp is a member of a cycle in T,(En;s) with parameter r=tq

So for instance for 2°-3°=5 we'll have a generalized nontrivial trivial cycle for r=5. For 28-3°=13 we'll have one with r=13, and so on.

Example: a short list for some small parameters r.
We begin with one more detailed description for r=>5.

Heuristically (testing a; up to 1 000 000) a table of results shows 6 cycles.

r=5

anin - relfreq¥ N S vector // comments
5 20.000000 1 2 [2] /] r(2*S - 3*N) =r-1 generalized "trivial" cycle
1 14.154000 1 3 [3] /] 2SS -3N=2"3-31=5=r
19 49.522000 8 5 [1.1.3] I zs=N=2%=FJ=6=r

23 9.298000 3 5 [1. 2 2]

187 3.254000 17 27 [(1,1,1,1,1,2,1,1,2, 1,2, 83,2 1, 1,1, 5]

347 3.772000 17 27 [l1,1,1,1,3 1,1,1,1,2 2 4,1, 2, 1,2, 2]

Legend: the first column indicates the minimal element of the described cycle; for instance, in the same way as in the
3x+1-problem we have the trivial cycle at amin=1, we have in the 3x+5-problem the trivial cycle at am»=5. That cycle has of
course the length N=1 and vector of exponents is /2], so also the sum S of exponents is S=2 . (Even more, in general, hav-
ing a cycle at a;, N can of course be any number, then Eys =[2,2,2,2,..,2] with N elements of value 2 and S=2N - this all de-
fines the same trivial cycle)

The second column gives a statistic "rel freq%" in percent: for how many a; in that tested range occurs that specific cycle
(relatively to size of range, in percent).

The other columns have obvious descriptions in their title.

First we find the generalized "trivial cycle" at a;=5.

A second cycle of length N=1 occurs at amm=a;=1 because we have (1-3+5)/23 = 1 and the vector of exponents is simply /3] and also
S=3.
A third cycle occurs with length N=3; using the exponents [1,1,3] (and thus S=5 - we want that 25 > 3") it can be determined by
Q([1,1,3]=3% + 3-21+21*1 = 19
25-3V=5
ar=r-Q([1,1,3])/(2°-3")=5-19/5=19
and a fourth one by
Q([1,2,2]=3% + 3-21+21*2 = 23
25-3N=35
ar=r-Q([1,22])/(2°-3V)=5-23/5=23
We have even two longer cycles with N=17,5=27, and a;=187 and a;=347. Here the expression 25-3" has the following factoriza-
tion:
factors(2¥” - 317) = 5-71- 14303
The p/gq-notation says
ai;=r- Q[E1727]/ 5 71 - 14303:r-p/q

and obviously the two expressions for Q(E1727) cancel the factors 71-14303 and we need r=5 to find an integer value for a; and
establish a nontrivial cycle for this parameter r=>5.
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Here is a compacted table for some small problem parameters r: in parentheses (N,S) and the number(s) after the parentheses is/are
a;. If there are more numbers here, then this shows occurence of more cycles with the same (N,S) (true new cycle, no rotations!)

Table 2:

r | "trivial” non-trivial cycles comments
1/(1,2)1
3|(1,2):3
5]|(1,2:5 (1,3):1 (3,5):19,23 (17,27):187,347
70(1,2:7 (2,4):5
9](1,2):9
11](1,2):11 (2,6):1 (8,14):13
13((1,2):13 (1,4):1 (5,8):211,259, | (15,24):131
227, 287,251,
283,319
15((1,2):15 (1,3):3 (3,5):57,69 (17,27):561,1041 The yellow marked cycles are inherited from that of r=5 because of the
factorization of r=5-3
17| (1,2):17 (2,7):1 (18,31):23
19| (1,2):19 (5,11):5
21| (1,2):21 (2,4):15
23| (1,2):23 (2,5):5,7 (26,43):41
25| (1,2):25 (1,3):5 (3,5):95,115 (17,27):935,1735 | (8,16):7 (4,8):17 The yellow marked cycles are inherited from that of r=5 because of the
factorization of r=5'5
27| (1,2):27
29 | (1,2):29 (1,5):1 (9,17):11 (41,65):3811,7055
31|(1,2):31 (12,23):13
33 (1,2):33 (2,6):3 (8,14):39
35| (1,2):35 (1,3):7 (3,5):133,161 (17,27):1309,2429 | (2,4):25 (4,8):13,17 | The yellow marked cycles are inherited from that of r=5 because of the
factorization of r=57 and the green marked cycle is inherited from that
of r=7 . The new cycle (4,8) is specific for r

(http://hal.archives-ouvertes. fr/IRMA-ACF, file hal-00129656 according to Lagarias (2011))

Parameter r=(25-3") with given N and S

In an equation with given N and S where also r=(25 - 3") and thus

23) ar =r-Q(Ens)/(25-3Y)
ar = Q(Ens)

we have obviously that any vector Eys gives one valid solution for a cycle containing a;. So any vector
Ens=[A1A2As, ... An] restrictedto Y, NAc=S

we have a combinatorical number C* of members a.x of cycles, and since N members define one cycle we have C=C*/N cycles for this
parameter r.

Example 1: let N=3, S=5. Then let r=25-3V= 32 - 27 = 5. Then the list of possible vectors Ex s
[1,1,3],[1,22],[2,1,2], [1,31], [2.21], [3,1,1]

Thus C*=6, C=6/3=2 and we shall have 2 different cycles with this r=5. Note that the vectors above can be seen as rotations, such that
we get the two groups

[3.11], [1,31], [1,1,3] cycle 1 (49->31->19->..)
[2.21], [2,1,2], [1,2,2] cycle 2 (37-529->23->..)

which define "rotationally” the according members aj az,as for each cycle when formula 2.3) is applied accordingly.

Example 2: let N=5, S=8. Then let r=28-3°= 256 - 243 = 13 . Then the list of possible vectors Ey is

[41,1,1,1][32,1,1,1][2,3,1,1,1][1,4,1,1,1][3,1,2,1, 1]
[2,2,2,1,1][1,3,2,1,1][2,1,3,1,1][1,2,3,1,1] [1, 1,4, 1, 1]
[31,1,21][2,2,1,21][1,31,2,1][2,1,2,2,1][1,2,2,2,1]
[1,1,321][21,1,31][1,2,1,3,1][1,1,2, 3, 1][1,1,1,4 1]
[31,1,1,2][2,2,1,1,2][1,31,1,2][21,2,1,2][1,2,2,1,2]
[1,1,31,2][2,1,1,22][1,2,1,2,2][1,1,2,2,2][1,1,1,3,2]
[2,1,1,1,3][1,2,1,1,3][1,1,2,1,3][1,1,1,2,3] [1,1,1, 1, 4]

Thus €*=35, C=35/5=7 and we shall have 7 different cycles with this r=13.

Again the vectors above can be separated into groups of rotations, such that we get the 7 groups

[41,1,1,1][1,41,1,1][1,1,4,1,1] [1,1,1,4 1] [1,1,1,1, 4 cycle 1 211-> 323 -> 491 -> 743 -> 1121 -> 211
[32,1,1,1][1,3 2,1,1][1,1,3,2,1] [1,1,1,3 2] [2,1,1,1, 3] cycle 2 259 -> 395-> 599 -> 905 -> 341 -> 259
[231,1,1][1,2,3,1,1][1,1,2,3,1] [1,1,1,2,3] [3,1, 1,1, 2] cycle 3 227 -> 347 > 527 -> 797 -> 601 -> 227
[31,2,1,1][1,31,2,1][1,1,3,1,2] [2,1,1,3 1] [1,2,1,1, 3] cycle 4 287 -> 437 -> 331-> 503 -> 761 -> 287
[21,31,1][1,2,1,3,1][1,1,2,1,3] [3,1,1,2,1] [1,3, 1,1, 2] cycle 5 251->383 -> 581 -> 439 -> 665 -> 251
[22,2,1,1][1,2,2,2,1][1,1,2,2,2] [21,1,2,2] [2,2, 1,1, 2] cycle 6 283 -> 431 -> 653 -> 493 -> 373 -> 283
[22,1,21][1,2,2,1,2][21,2,2,1][1,21,2,2] [2,1,2,1, 2] cycle 7 319 -> 485 -> 367 -> 557 -> 421 -> 319

It comes out, that the number C*is simply determined by C*=binomial(S-1,N-1) .
Unfortunately, this is not always divisible by N so the C=C*/N rule cannot always be applied.
Parameter r with (25-3")=t-s and Q(Eys)=t-u (with given N and S)

If we have (2°-3)=t-s and Q(Ens)=t-u (with given N and S) , then r needs to cancel the factor s in the denominator. If r=s then we have
a cycle with a;=u and if r is a j'th multiple of s we have a cycle with a;=j-u

Example: N=3, §=21 then (25-3V)=t-s =19-(125-883) and Q([1,1,19])=t-u=19-1. Let r=125-883= 110375-

This gives C*=(21-1:5-1)=190 including one 1-step cycle, so the number C=(C*-1)/N = 63 gives the cycle candidates. But only some have
the denominator's factor t=19 in the primefactorization of the numerator Q(Ey,s) namely
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E; E; E3 Q(E1) Q(E2) Q(E3) a; -> |az -> | a;z -> | comment
cycle1|[7,7,7] 19-883 883 883 883 1-step-cycle
cycle2 | [1,1,19] |[1,19,1]|[19,1,1]|19 19-229-241 |19-281-491 1 55189 | 137971
cycle3 | [2,811] |[811,2]|[11,2,8]|19-5-11 19-5-5527 | 19-5-151 55 27635 755
cycle4 |[3,13,5] |[13,53]|[53,13]|19:7-17-29 |19-15091 19-19 3451 15091 19

Of course, if it happens, that r=110375 can also expressed by a formula 25-3" with some N and S then we have a further number
C*=binomial(S-1,N-1) and an according set of cycles with cardinality C=C*/N .

Composite parameter r vs. primer

If we compare composite and prime r then we find one more interesting aspect (which was indicated already in the above table).

It appears that if r is composite with primefactors s and ¢, such that r=s-t then T, () has the cycles of both Ts( ) and T,( ) (only that the
members ay are rescaled by the according factor: Ts( ) has the same cycles as Ty ) but the members are scaled by r/s =t and as well the
same as T, ) but those are scaled by r/t =s) - but moreover it seems, that generally Ty() has some additional "primitive" cycles (except
for additional powers of 3in sor t).

So for instance, let s=5,t=7, r=st=35.

Ts( ) has the nontrivial cycles

(N.S)=(1,3) a:=1,

(N,S)=(3,5) a;=19 and 23,

(N,S)=(17,27) a;=187 and 347

Then Tss( ) has (at least) the same cycles, but the members ai are multiplied by 35/5=7:

(N,S)=(1,3) a1=7,

T,( ) has the nontrivial cycles
(N.S)=(2,4) a;=5
Then T3s() has (at least) the same cycles, but the members ax are multiplied by 35/7=5:
(N,S)=(2,4) a:=25

(N,S)=(3,5) a;=133 and 161,

(N,S)=(17,27) a;=1309 and 2429

But additionally, each composite r may provide cycles which are "unexplained” by its primefactors.
(In Lagarias [Lag90] and later Belaga [Bel07] this is called "primitive cycle” which I'll adapt here)

So Tss() can have some additional, primitive cycles - when in the expression a; = r-Q(Ens)/(2°-3") = p/q the
reduced denominator q carries both factors s-t . In the current case we find

(N,S)=(4,8)
and

a1=13
a1=17

(E4s=[1,1

,1,5])

(E4s=[1,2,1,4])

This feature of additional primitive cycles is illustrated in the following table (in a hopefully more enlightening way). The leading col-
umn shows the problem parameters r. The heading lines give the arguments (N,S) and in the cells are the list of a;, each defining a cy-
cle. The cycles with (1,2) are the trivial ones, the rescaled trivial cycle from the 3x+1-problem.

Table 2 illustrating the occurences of cycles for T,( ) with composite r=stu=385=5-7-11 compared with that for T,() of prime r=s r=t

r=u r=st r=tu r=su. Entries are the minimal members a;; if more than one cycle/minimal member a; exist they are separated by ";

NS)| (1,2) (1,3) (3,5) (17,27) (2,4) (4,8) (2,6) (8,14) (4,12) (16,28) | (16,38) (6,18) (20,40) | (48,84)
r
5 5 1 19;23 187347
35 35 7 133:161 1309:2429 25 13;17
717 133-19-7 1309-1877 25=55 -primitive-
161=23-7 2429=347-7
7 7 5
77 77 55 7 91 1
56=5-11 7=1-7 91=13-7 -primitive-
11 11 1 13
55 55 11 209;253 20573817 5:7 65 1 M
11=1-11 209-19-11 2057-187-11 5=15 65=13-5 | -primitive- | -primitive-
253=23-11 3817-347-11 717
385] 385 77| 1463:1771 14399:26719 275 143;187 35:49 455 7 287 5 17 23 107
77=7-11 1463=19-11-7 2755115 143=13-11 | 3557 455=137-5 | 7=17 287=41-7 |5=1'5 primiti primiti primiti
177123117 187=17-11 14977

Additional remark: if we expand this table to contain also T3.3s5() then this does not add new cycles, because any factor of 3 in r (such
that r=3r") does not compensate for more factors in the denominator of p/q : in this type of problems (using 3a;+r) the denominator q
cannot contain the factor 3 because q is a factor of 25-3" which itself cannot contain that factor 3 except if N=0
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Further discussion / draft material.

a) Discussing transformations and cycles in terms of exponents-vectors Eys = [A1, Az, ..., An] and stating equations 6) give some inter-
resting consideration:

— of course, any combination of values Ax >0 in Eyslead to a rational number

2/q=Q([A1, Az, ..., Ax])/(25 - 3Y)

( where p/q means the fraction in most cancelled form)

— thus every expression for the existence of a cycle a; =r - p/q can obviously be solved in a pair of integers a;=p, r=q
which immediately means that

— for any exponents-vector Eys=[A;, Az, ..., Ay] a solution for a cycle exists with an appropriate parameter r.
Moreover, multiple solutions exists by scaling of a; and r by some common cofactor.

— The truth of the Collatz-conjecture is then equivalent to the statement, that no exponents-vector Eys = [A;, Az, ..., Ax] exists
such that 25 > 3V and Q(Ews) is divisible by 25-3 except if all A,=2 and thus S=2N . (For 2° < 3" and thus negative a; we know
three more cycles)

b) and c) not yet worked out, see file Collatz_3x_r_material.doc.

A side remark: Analogy to the Zsigmondy-theorem on Mersenne-numbers:
This seems to occur in a similar manner as it occurs with the prime factorization
of the Mersenne numbers My : the M, of composite indexes n=pq have all primefac-
tors as M, and M, alone, but always some additional primefactors (exept for

M2,3:M5:32-7), which are called "primitive primefactors” in that context. This is a
theorem known by a proof of Zsigmondy (wikipedia). I did not yet see the possi-
bility to translate this to the problem here, however, and to do something like a
proof. The striking similarity is on the exceptional cases: if r is composed with
primefactor 3 then r has not those "unexplained” additional cycles (like Ms has no
"unexplained" /"primitive" primefactors)!
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Appendix: List of cycles in 3x+r-problem with odd parameters rr with 5<=r <=63 and some more small specific cases

For cycle-searching I used odd numbers ax=1 .. 999 999.

The column "relfreq" gives the relative frequency (in percents) of the occurence of the cycle as the tail of the trajectories for the odd ay in the interval 1 <=
ax <=999 999. Occasionally I used some shorter computations ax = 1... 19 999 only, because the relative frequencies appeared to be very stable and compu-
tation is time-consuming

r=1 ( The original Collatz-problem; 1=2? - 3-1 : this leads systematically to a N=1,S=2 cycle at a;=1).

anin relfreq¥ N S vector
1 100.000 1 2 [2] The basic "trivial cycle" in the Collatzproblem
-1 1 1 [1] There are cycles in the negative numbers but they are not considered furtherly here
-5 2 [1, 2]
-17 7 11 [1,1,1, 2, 1,1, 4]
r=3
anin relfreq¥ N S vector
3 100.000 1 2 [2]

r=5(5=23 - 3-1: this leads systematically to a N=1,5=3 cycle at a;=1)

anin - relfreql N S vector // comments
5 20.000000 1 2 [2] /1 r-(2*S - 3*N) =r-1
1 14.154000 1 3 [3] //2°S -3N=5=r
19 49.522000 3 5 [1.1,3] //2°S -3N=5=r
23 9.298000 3 5 [1., 2, 2]
187 3.254000 17 27 [(1,1.,1,1,1,2, 1,1, 2,1,2, 3,2, 1,1,1,5]
347 3.772000 17 27 [1,1,1,1,38,1, 1,1, 1,2 2 4,1, 2 1,2, 2]
r=7
anin  relfreqgl N S vector
7 14.280000 1 2 [2] /1 r-(2S - 3*N) =r-1
5 85.720000 2 4 [1, 3] /] 2%4 -32=7=r
r=9
anin relfreq’ N S vector
9 100.000 1 2 [2]
r=11
anin relfreq¥ N S vector
11 9.080000 1 2 [2]
1 20.100000 2 6 [1. 5] // 2°S - 32 =5r
13 70.820000 8 14 [1,1,2 2, 1,1, 3, 3]

-19 3 4 1.1, 2]

r=13 (13=2*- 3-1 this leads systematically to a N=1,5=4 cycle at a;=1)

anin  relfreql N S vector

1 47.550000 1 4 [4] /224 -31=13=r
211 3.334000 5 8 [1.1,1, 1,41 //2°8-3%65=13=r
227 1.880000 5 8 [1.1.1, 2 3]

251 1.958000 5 8 [1,1,2 1, 3]
259 3.934000 5 8 [1,1.1, 3. 2]
283 2.506000 5 8 [1.1.2 2 2]
287 4.380000 5 8 [1.2.1, 1, 3]
319 1.424000 5 8 [1,2.1, 2 2]

131 25.342000 15 24 [1,1,1,3,1,1,1,1,1,2 1,2 1,2, 5] // Q(Exs)=131*%186793 2°24-3"15 = 13*186793

anin  relfreql N S vector

3 14.168000 1 3 [3]

57 49.642000 3 5 [1,1, 3]

69 9.336000 3 5 [1, 2, 2]

561 3.176000 17 27 [1.,1,1,1,1,2 1.1, 2,1, 2 3,2 1.1, 1, 5]
1041 3.678000 17 27 [1,1,1,1,3,1,1,1,1, 2 2, 4,1, 2 1, 2, 2]
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r=17

anin - relfreql N S vector

1 33.300000 2 7 [2, 5]
23 60.820000 18 31 [1,1,2,1,2, 3 1,1,1,2 2 2 1,1, 4, 1,3, 2]

-65 4 6 [1.1.1, 3] -65=13*%-5
r=19
anin  relfreqgl N S vector

5 94.740000 5 11 [1.1,2 4, 3]

r=21
anin relfreq’ N S vector
21 14.2800 1 2 [2]

15 85.7200 2 4 [1, 3]

r=23

anin  relfreqgl N S vector

6.298000 2 5 [1. 4] [/ 2°5 - 3°2=r
41.528000 2 5 [2, 3]
41 47.826000 26 43 [1,1,1,1,1,2, 1,1, 2,2, 1,.1,1,4 2 2 1,1,1, 2 5 1, 1,3, 2 2]

r=25

anin relfreq’ N S vector

5 2.8800 1 3 [3]
95 9.5600 3 5 [1,1, 3]
115 1.9400 3 5 [1,2, 2]
17 37.4200 4 8 [2.1, 2, 3]
7 42.5800 8 16 [1,1.1.1,2 5 1. 4]
93 0.7900 17 27 [(1,1,1,1.1,2, 1,1, 2, 1,23, 2 1. 1,1, 5]
1735 0.830 17 27 [(1,1,1,1,3,1,1,1,1,2, 2 4,1, 2, 1,2, 2]
r=27
anin relfreql N S vector
27 100.000 1 2 [2]
r=29 (=25 - 3-1 this leads systematically to a N=1,5=5 cycle at a;=1))
anin  relfreqgl N S vector
29 3.448000 1 2 [2]
1 7.922000 1 5 [5] /] 2% -31=r
11 87.984000 9 17 [1.1.2, 2, 1,2, 1, 3 4]
3811 0.354000 41 65 (1,1,1,1,1,1,1,2,31,1.,1%21,1,%21,11%11,1,2,1,1,1,3,1,1,5,1,2,2,1,1,1,1,6,2, 3, 3]
7055 0.292000 41 65 [1.,2,1,1,1,2,1,1.,1,1,1,1,1, 2,3 1,2 2 1,1, 1,1, 1,1, 2, 1,53, 1.3, 1,1, 1,1,83, 21,2 2 3, 2]

Note that (41,65) are convergents of the continued fraction

r=31

anin - relfreq¥ N S vector

13 96.774000 12 23 [1,3,1,1,1,3, 1. 2 2 3,1, 4]

r=33

anin relfreq’ N S vector

3 19.5600 2 6 [1, 5]
39 71.3500 8 14 [1,1,2 2,1, 1,3, 3]

r=35

anin relfreql N S vector

7 1.98000 1 3 [3]
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25 17.1500 2 4 [1, 3]
133 6.91000 3 5 [1.1,3]
161 1.42000 3 5 [1. 2, 2]
13 17.2200 4 8 [1.1.1,5]
17 51.3500 4 8 [1.,2, 1, 4]
1309 0.490000 17 27 [1,1,1,1,1,2,1,1,2, 1,2, 3, 2 1,1,1,5]
2429 0.630000 17 27 [1,1,1,1,3, 1,1, 1,1,2,2 4,1, 2,1,2, 2]
r=37
anin relfreql N S vector
37 2.71000 1 2 [2]
19 48.3500 3 6 [1.1,4]
23 23.0900 3 6 [1.2. 3]
29 25.8500 3 6 [2.1.3]
r=39
anin relfreql N S vector
39 7.69000 1 2 [2]
3 47.5100 1 4 [4]
633 3.12000 5 8 [1.1,1.1, 4]
777 3.92000 5 8 [1.1,1, 3 2]
681 1.79000 5 8 [1.1,1, 2 3]
861 4.57000 5 8 [1.2, 1,1, 3]
753 2.05000 5 8 [1.1,2 1, 3]
849 2.66000 5 8 [1.1,2 2 2]
957 1.36000 5 8 [1.2.1, 2 2]
393 25.3300 15 24 [1,1,1,3, 1,1, 1,1,1,2 1, 2, 1,2, 5]
r=41
amin relfreqd N S vector
41 2.44000 1 2 [2]
1 97.5600 8 20 [2,1,3, 1,2 1,1, 9]
r=43
anin relfreg? N S vector
43 2.32000 1 2 [2]
1 97.6800 3 11 [1, 4, 6]
r=45
anin relfreg? N S vector
45 20.0000 1 2 [2]
9 14.4500 1 3 [3]
171 48.4900 3 5 [1.1, 3]
207 9.57000 3 5 [1. 2, 2]
1683 3.82000 17 27 [1,1,1,1,1,2, 1,1, 2, 1,2 3,2 1,1,1,5]
3123 3.67000 17 27 [1,1,1,1,3, 1,1, 1,1, 2 2 4,1,2 1, 2 2]
r=47 (- =27 -34)
amin relfreqd N S vector
47 2.13000 1 2 [2]
65 13.5300 4 7 [1.1.1, 4]
89 5.94000 4 7 [1.1,3, 2]
73 5.76000 4 7 [1.1,2, 3]
85 3.91000 4 7 [1.2.1, 3]
101 3.28000 4 7 [1.2, 2, 2]
5 39.2900 7 18 [1, 2,3, 3.1, 4, 4]
2526.1600 16 28 [1,1,3,1,1,1,1,2, 1,2, 1,3, 2 1, 2, 5]
r=49
anin relfreg? N S vector
49 2.04000 1 2 [2]
35 12.2400 2 4 [1, 3]
25857200 22 38 [2,1,1,1,3,2,1,1,1,1,1,1,2,83,1,1,2 2, 1,2, 2, 6]
-65 4 5 [1.1.1, 2]
r=51
amn relfreqd N S vector
51 5.88000 1 2 [2]
3 32.5200 2 7 [2. 5]
69 61.6000 18 31 [1,1,2,1,2,3,1,1,1,2, 2 2 1,1, 41,3, 2]
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amin relfreqd N S vector

103 98.1100 17 29 [1.2,2,2.1,1,1,1,2, 2 3,1,3 1,1, 2, 3]

anin relfreqd N S vector

11 1.29000 1 3 [3]

5 3.88000 2 6 [1. 5]

7 38.9300 2 6 [2. 4]

209 4.30000 3 5 [1.1,3]

253 0.88000 3 5 [1.2. 2]

1 16.3000 4 12 [1,1. 2 8]

65 14.3000 8 14 [1,1,2 2. 1.1.3, 3]

41 17.5000 16 28 [1.,1.,1,1, 2 1,1,3, 1, 2 2, 4,1, 2 2 3]
2057 0.38000 17 27 [1,1,1,1,1, 2, 1.1, 2, 1,2, 3, 2 1.1, 1, 5]
3817 0.42000 17 27 [1,1,1,1,3, 1,1, 1, 1.2 2,4, 1,2 1, 2. 2]

r=57

anin relfreg? N S vector

57 5.26000 1 2 [2]

15 94.7400 5 11 [1.1,2, 4, 3]

r=59

amin relfreqd N S vector

59 1.69000 1 2 [2]

123.3300 11 28 [1,3.2 1.1,2 5, 1.1, 4, 7]

133 53.9600 6 10 [1,1,1.,1 1.5]

181 10.4700 6 10 [1.,1,1,3. 1.3]

185 3.44000 6 10 [1,2, 1.1 1.4]

217 2.42000 6 10 [1,2,1, 2 1, 3]

149 2.37000 6 10 [1,1,1,2 1, 4]

221 2.32000 6 10 [1.1,2 2 2 2]

r=61 (=2%-3-1 this leads systematically to a N=1,5=6 cycle at a;=1)

amin relfreqd N S vector

1 93.3500 1 6 [6]

235 5.01000 41 66 ([1,1,2,2, 1,2, 1,1,1,1,1,1,1,1,2 1,1.1,3,1,2,2 2 3,1,1,2, 3,2, 1,1, 1,2 3, 1,2 3, 2. 1.3, 2]

anin relfreg? N S vector

45 85.7200 2 4 [1, 3]

anin relfreqg? N S vector

5 9.500000 4 12 [3,1, 3, 5]
47 39.800000 8 15 [1,1,3, 1, 2 1,3, 3]
19 49.326667 32 60 [1,2, 1,2 2 4, 2 3
r=77
anin relfreq N S vector
77 1.30000 1 2 [2]
55 7.79000 2 4 [1, 3]
7 2.78000 2 6 [1,5]
91 10.2000 8 14 [1,1,2 2. 1.1, 3. 3]
177.9300 16 38 [4, 21,3, 2. 1,2,2,1,2,1. 1,2, 4,1, 9]

r=125 (=27-3-1 this leads systematically to a N=1,5=7 cycle at a;=1)

amin relfreq N S vector

25 0.586666 1 3 [3]
1 0.546666 1 7 7]
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Note: "Zsigmondy-effect": there are no new cycles compared to Tss() which were expected after r=105 is composite by 3-35

r=139
anin relfreq? N S vector
139 0.720 1 2 [2]
11 99.3 74 136 (2,2, 2,1,1,1,1,2,1,1,2, 2, 2,3, 1,412 3 1,1,1,3,1,1,2 2 2,1,2,.2 1,1, 41
1,1,3,83,2,1,2,1,1,1,1,3,2,1,2,2,3,1,1,1,1,1,1,2,2,2,2, 2, 4,1,2, 2 2, 4,4
2,1, 83, 5]
r=385 (=5-7-11 displays collection of all cycles of all T,( ) where t is a divisor of r, plus some "non-explained" cycles)

anin relfreqgl N S vector a multiple of Tuux()

385 0.26000 1 2 [2] GrgreslilEsm 1)

77 0.17000 1 3 [3] 7*11%Ts (1)
1463 0.69000 3 5 [1,1, 3] 7*11*Ts ( 19)
1771 0.14000 8 5 [1.2. 2] 7*11*Ts ( 23)
14399 0.02000 17 27 [1,1,1,1,1,2,1,1,2,1,2,3,2, 1,1, 1, 5] 7*11*Ts (187)
26719 0.02000 17 27 [1,1,1,1,3 1,1,1,1,2,2,4,1,2, 1,2, 2] 7*11*Ts (347)

275 1.56000 2 4 [1. 3] LI (B)

35 0.54000 2 6 [1.5] 5% 7*Tu( 1)

455 2.05000 8 14 [1,1,2,2 1,1, 3, 3] 5% 7*Tu(13)

143 1.77000 4 8 [1, 1,1, 5] 11*Ts(13)

187 4.46000 4 8 [1,2, 1. 4] 11*T35(17)

7 2.16000 4 12 [1,1, 2, 8] 7*Tss( 1)

49 5.65000 2 6 [2. 4] 7*Tes( 7)

287 2.58000 16 28 [1,1,1,1,2,1,1,3, 1,2, 2,4, 1, 2 2 3] 7*Ts5(41)

5 15.5900 16 38 [4,.2,1,83,2, 1,2, 21,2, 1,1,2 4, 1, 9] 5*Tn( 1)

------------------------------------------------------------------------------------------------------------ "unexplained" (="primitive") cycles

17 13.7200 6 18 [2, 3,2, 1,5, 5] Tass( 17)

23 17.4500 20 40 (1,1,6,1,1,1,1,2 1,2, 2,1,1,2, 1,3, 1.1, 4 7] Tass( 23)

107 31.1700 48 84 [1,2,2,1,1,1,2, 1,1,1,2,2, 1,2, 1,1,3, 1,4 1,1,1,3, 3,1, 2, Tass(107)

3,1,3, 1,1, 1,1, 1, 1,1,2, 2 4,1, 1,3, 2, 2,2, 2 4, 3]
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