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Abstract: This is an exercise in application of the concept of Carleman-
matrices for the question of getting a finite expression for the problem of 
summing a function at consecutive arguments s(x,n) = f(x)+f(x+1)+f(x+2)+ ... + 
f(x+n-1) . I've experimented earlier with the problem of sums-of-like-powers in 
the Faulhaber and Bernoulli-sense. That problem led to the solution by finite 
polynomials, now known as Bernoulli-polynomials.  

Here I try, whether we can import the rationale, which I'd employed in that 
question, for the current problem where f(x) is the log-function, and more 
generally, for sp(x,n) = fp(x) + fp(x+1) +  ...  + fp(x+n-1) where fp(x) is the p'th 
power of log(x). We do not arrive at polynomials for that problem, but must 
work with infinite series; however we get some much interesting reflection of 
the zeta-function and its derivatives. 

Temporary remark: there is one (minor) unsolved problem with it, where we 
want to have the constant for a power series being ζ(0)' but get it by the dif-
ference of 1; I'm still working on this. It does not affect the solution for the 
sums of consecutive logarithms with finitely many terms; only for the infinite 
series this difference occurs. Also there is no problem at all if we work the 
same scheme out for the alternating sums. 

Gottfried Helms Kassel, 7'2017 (first version 2012) 
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1. Sums of like powers of logarithms 

1.1. Intro 

Is there a polynomial or series-expression for the sum of consecutive logarithms 

 log(1) + log(2) + log(3) + ... + log(n) ? 

Or even, with some integer exponent p 

 log(1)p + log(2)p + log(3)p + ... + log(n)p ? 

 

 A bit background: In my treatize "Sums of like powers" [Helms2009] I 

have successfully explored the old and venerable problem of the possibility 

to find a polynomial expression for the sum of like powers  

 sp(n) = 1p + 2p + 3p + ... + np 

when I was working with the Carleman-matrix ansatz and I've rediscov-

ered this way the Bernoulli-polynomials but - more precisely - their inte-

grals. There the coefficients of the polynomials appear organized in a ma-

trix, which I called ZETA-matrix and which contains the original Faulhaber-

solutions for that summing problem (plus a small, but significant, exten-

sion).  

This ansatz/method does then not only allow to generalize the above sum-

of-like-powers to any contiguous segment 

 sp(a,n) = ap + (a+1)p + (a+2)p + ... + (a+n-1)p 

but moreover, by evaluation of the Bernoulli-/Zeta-polynomials, allows 

meaningful generalizations to  

• non-integer first value a and even to 

• non-integer differences of the first and the last element of the sum.

  

(The latter thus introducing somehow "fractional bounds" for the 
summation1).  

• and even to non-natural exponents p (but then gives power series 
instead of polynomials). 

 

 

The path to the solution via the Bernoulli-polynomials resp. the ZETA-matrix has 

some basic and much interesting aspects for the student of number theory - so I 

asked myself, whether we can apply the same ideas as employed in that treatize to 

the question here of sums of logarithms (and hopefully of powers of logarithms), 

and whether we shall arrive at polynomials or at least at functionally similar 

power series for such generalized sums. 

                                                 

1 It might be of interest that there exists a serious example of the use of such "fractional index": it 

occurs already in a treatize of L. Euler [Euler1813], when he considered some generalization which 

was then equivalent to denote summation with a fractional bound: 
)2ln(2

12
1

1

−=∑
−

=k k  (This is due to a 

remark in [Muller2007]) 
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1.2. The problem for which we search for the formula 

So we want to find a general solution for the proposed function: 

(1) Sp(a,b)  = log(a+1)p + log(a+2)p + log(a+3)p + log(a+4)p +… + log(b)p  

  =∑
−

=

+
1

)1log(
b

ak

pk  

First we should check whether we can meaningfully introduce a helper function in 

the sense of an analogon to the Hurwitz-Zeta-modification: 

(2) Hp(a)  = log(a+1)p + log(a+2)p + log(a+3)p + log(a+4)p +…  

  =∑
∞

=

+
ak

pk)1log(  

from which we expect then the general solution for our problem: 

 Sp(a,b)  = Hp(a) - Hp(b+1)  = Sp(a, oo) - Sp(b+1, oo)  

  = ∑∑∑
=

∞

+=

∞

=

+=+−+
b

ak

p

bk

p

ak

p kkk )1log()1log()1log(
1

 

Clearly we should begin with the convergent cases where p < -1 but we shall see, 

that the generalization to general integer exponents p (with perhaps exceptions) 

gives (heuristically) meaningful results. 

 

1.3. The method of "indefinite summation" 

We try this by the method of indefinite summation2. 

For this we need a function which performs the increment for the argument 

 t: log(x) -->  log(x+1) 

Much obviously this can be solved by the function 

 t(x) = log(1+exp(x)) 

A power series for this can be obtained simply using Pari/GP to get the following 

leading coefficients: 

(2) t(x) = log(2) + 1/2 x + 1/8 x2 – 1/192 x4 + 1/2880 x6 - …  

Examination of the pattern in that coefficients give the most plausible explanation 

in terms of the Dirichlet-η "eta"-function (which is also called "alternating zeta" 

[see mathworld] ) at its integer arguments from 1 down to –infinity which are 

 

 η(1)= log(2) ~ 0.69314 

 η(0)= ½  

 η(-1)= ¼  

 η(-2)= 0 

 η(-3)= -1/8  

 η(-4)= 0 

 η(-5)= ¼  

 … … 

 

 

                                                 
2
 See for instance "indefinite summation" at wikipedia [wp:indefinite] 
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Thus if that initial heuristic holds, then the given coefficients for t(x) have the form 

 ~ 0.69314 = log(2) =η(1)/0! 
 1/2  =η(0)/1! 
 1/8 =η(-1)/2! 
 0 =η(-2)/3! 
 -1/192  =η(-3)/4! 
 0 =η(-4)/5! 
 1/12880  =η(-5)/6! 
 … … 
 

and thus (at the time of the current edition this was likely been proved, see foot-

note3) we can write the power series for the function t(x) as 

(3)  ∑
∞

=

−
=

0 !

)1(
)(

k

kx
k

k
xt

η
 

1.4. Asymptotic solution by the Neumann-series of a Carleman-matrix 

We use this function to define the "matrixoperator" (or: Carlemanmatrix4) T . With 

this we have 

  V(log(x)) · T = V(log(1+x))  

Note, that the size of the vectors V and the matrix T is assumed as infinite here and 

also, that T is not triangular5; its top-left aspect is 

 

    

 

where we see in the second column the coefficients of the power series for t(x) 

and in the following columns that of t(x)2, t(x)3 and so on which is due to its prop-

erty being a Carlemanmatrix. 

 

 

1.4.1. The Neumann-series of T 

The matrix-based method of the idea of indefinite summation requires now that 

for the sum with infinitely many terms 

 V(log(x)) · (I + T + T2 + T3 + ... ) = V(log(x)) + V(log(1+x)) + V(log(2+x)) + V(log(3+x)) + ...  

      the involved matrix-series (I + T + ...) is a meaningful expression and that the 

                                                 
3
 There was a seemingly correct proof for this in an answer to my question in the discussionboard math.stackexchange ,  see  

http://math.stackexchange.com/questions/307274/how-can-i-prove-my-conjecture-for-the-coefficients-in-tx-log1-expx 

4
 See for instance "Carleman matrix" in wikipedia [wp:carleman]; also known in variants as Bell-, Jabotinsky- or Sonnen-

scheinmatrix. In my own earlier articles I did not yet know that names, I've simply called them "matrixoperators" and didn't 

yet adapt that all denotations to the canonical one, which likely shall become "Carlemanmatrix" 

5
 This is different from the example with the ZETA-matrix/Bernoulli-polynomials in the [2009]-treatize 
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analogon to the geometric series in the cases of scalar arguments holds equiva-

lently6 

 I + T + T2 + T3 + ...  = ( I – T) -1   

   where I is the identity-matrix 

or can be made to hold by some regularization. Unfortunately the parenthese is 

not immediately invertible so we need some workaround.  

 

 

1.4.2. A pseudo-inversion by omitting the empty first column 

A method, which I've discovered and successfully applied in my 2009-treatize on 

the Pascalmatrix P, and which has also been earlier invented by some authors7 is 

the following, which I call here "pseudo-inversion". I'll apply and describe it, in a 

short overview, ignoring at the moment that there might be some sophisticated 

bias-effect in the empirical asymptotics8. 

First, by the construction of a matrix C as Carlemanmatrix we'll have systemati-

cally that in (I - C) the first column is zero, so for that matrix the inversion is not 

possible. 

To get some -hopefully meaningful- pseudoinverse we introduce the upper square 

submatrix of ( I - C) from which the first column is removed, with some size n x n, 

call that submatrix Qn and invert it to get Qn
-1 . We repeat this process with in-

creasing n and thus increasing matrixsize, checking whether the entries in the 

resulting matrix Qn
-1 converge to some fixed values. If we arrive at such a matrix-

convergent, we prepend an empty rowvector at the top and remove the bottom 

row - just to get a squarematrix again and assume this matrix as a reasonable ap-

proximation to the true pseudoinverse of ( I - C ) also for the case of infinite size. 

The empty top row shall get some meaningful values which I'll explain later. 

In our case with T in the position of the matrix C in the above, we indeed seem to 

get such a matrix convergent valid in the first 8 to 10 digits already if the dimen-

sion is only n=32 or n=64; let's call it H because it it the associated matrix to the 

function H(x) with which we want to work here, and denote it as H* because the 

top row has not yet been populated with meaningful values. 

Having n=32 we get H32
* with its top-left aspect as  

  H* =   

 

 

 

                                                 
6
 This is known as Neumann-series; an example, and criteria for convergence/applicability, are for instance in Wikipedia 

7
 I found it some years ago at [Robbins2005], who had pointed also to an article of Peter Walker[Walker1991] 

8
 I've analyzed the occuring matrices by means of the LDU-decomposition into triangular, even in the case of infinite size 

invertible, matrices in the context of tetration and the "superlog", finding one possibly nontrivial systematic aberration by 

the truncation which might not be overcome by increasing the matrixsize. Also P. Walker mentioned the possibility of some 

aberration in his use of that concept but without giving it a deeper consideration. But here I've found also an analytic descrip-

tion which allows to compute the matrix H without going via this "Pseudo-inversion". 
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With this we get empirically 

V(log(2))-V(log(1)) ·H* = 1.0000000 0 0 0  … 

V(log(3))-V(log(1)) ·H*= 2.0000000  0.69314718  0.48045301  0.33302465  … 

V(log(4))-V(log(1)) ·H*= 3.0000000  1.7917595  1.6874020  1.6589936  … 

V(log(4))-V(log(3)) ·H*= 1.0000000  1.0986123  1.2069490  1.3259690  … 

 

The approximations to the expected values are already very well (and many more 

examples come out successful with good approximations to the expected values. 

Thus we might -with good evidence- assume that the desired general expression 

holds by convergence of the power series in some range of its arguments a,b : 

 V(log(b+1))-V(log(a)) · H*,1   = ∑ =

b

ak
k)log( = S1(a,b) 

   where c indicates the column and begins with index 0 

 

 

 

1.4.3. The function H*
c(x) and their completions Hc(x) 

A closer look at the (primarily interesting) 2nd column H*,1 suggests, that it just 

contains the coefficients for the composite function log(Γ(exp(x))); Pari/GP gives 

us the Taylor series for this as  

 log(Γ(exp(x)))  =  - 0.57721566 x  
    + 0.53385920 x2  
    + 0.32557879 x3 
    + 0.12527414 x4  
    + 0.033725651 x5 
    + 0.0068593536 x6  
    + O(x7) 

which is close enough to make us confident that we are in principle on the right 

track here. (For an estimate of the range of convergence see appendix 2.3 ). 

Let us, before generalization to all columns of H*, first look at the function H1*(x) 

which is defined by the power series with coefficients from column c=1, so we 

have 

 H1*(x) = ∑
=

⋅
oo

k

k

k xh
1

*

1,  =  log(Γ(exp(x)))  

and for a logarithm of a natural number as argument we have for instance 

 H1*(log(4)) = log(Γ(4)) = log(1∙2∙3)  = log(1)+log(2)+log(3) 
 H1*(log(6)) = log(Γ(6)) = log(1∙2∙3∙4∙5)  = log(1)+log(2)+log(3)+log(4)+log(5) 
 H1*(log(6)) - H1*(log(4)) =  log(4∙5)  = log(4)+log(5)    
    = S1(4,5) 

Our goal with that function H1(x) was however, to get some analogy to the Hur-

witz-zeta function, which provides an infinite series of function-values of consecu-

tive arguments beginning at its own argument, so we want actually 

 H1(log(4)) = log(4)+log(5)+log(6)+ ...  

and this means, that we should have the function at x = log(1) = 0 as 

 H1(log(1)) = H1(0) = log(1) + log(2) + log(3) + ... 
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from which we would then substract 

 H1(log(a)) = H1(0) - H1*(log(a))  
   =     log(1) + log(2) + log(3) + ... 
     -  (log(1) + log(2) + ... + log(a-1))  
   = log(a) + log(a+1) + log(a+2) + ...  

so H1(0) should give us the value for the series of consecutive logarithms of all 

consecutive natural numbers. In this case the argument x for the power series 

equals zero and the result must thus been contained in the first coefficient h*0,1 

only, which is that for x0.  

Now there is a possible closed-form expression for this infinite series: this is by 

zeta-regularization and namely by the first derivative of the zeta at zero: 

 ζ(0)'  =R   log(1/1) + log(1/2) + log(1/3) + ...      // the symbol =R means here: by regulariza-

tion  
 -ζ(0)'  =R   log(1) + log(2) + log(3) + ...       
  ~  0.918939... 

Our function H1(x) should thus contain that value as constant coefficient, and the 

completed power series for H1(x) should look finally like 

 H1(x)  = (-ζ(0)') - log( Γ ( exp( x ) ))  
  = 0.918939 + 0.57721566 x -  0.53385920 x2 -  0.32557879 x3 - 0.12527414 x4  ...  

 

 

 

Similar considerations are to be done for the functions H*c(x) and Hc(x) for the col-

umns of H* with higher index c, except the only significant variations that  

• we need the c'th derivatives of the ζ(0), and  

• analogies like the log( Γ (exp(x))) for higher c; unfortunately such functions 

are not in the set of commonly used and named functions9. 

For the completion of the matrix H* to arrive at the final matrix H this means, that 

we fill into the entries of the first row the (appropriately signed) c'th derivatives 

of the zeta at zero and have thus 

 hr,c = (-1)c∙ζ(0)(c)   for r=0 
 hr,c = - h*r,c    for r>0 

That first few signed derivatives (beginning with order zero) are approximately10 

 [-1/2, 0.91893853, -2.0063565, 6.0047112, -23.997103, 120.00023] 

With this we have the definitions for all completed functions Hc(x) at hand: 

 Hc(x) = (-1)c∙ζ(0)(c) - Hc*(x) =  ∑
=

oo

r

r

cr xh
0

,  

                                                 
9
 I've asked in the MSE-community without getting an answer besides some interesting comments. See 

http://math.stackexchange.com/questions/207455  

10
 There is some optimized numerical computation for the derivatives of the zeta at 0. That derivatives are expressible as 

infinite power series; a well converging one is 

 

!
!

)1()(
inf

0

0|

)(
p

k
s

k

kpp

s

p −







−= ∑

=

+

=

γ
ζ

 
where the coefficients γk are the Stieltjes-constants beginning with γ0=0.5772156… (which is also known as "Euler-

Mascheroni-constant"). Only the first two of that numbers have "simple" representations; we have for instance 

 -0.91893853… = - ½ log(2 π ) 
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and the sought functions Sp(a,b) are then 

 Sp(a,b)  = log(a)p + log(a+1)p + ... + log(b)p  
 
  =R Hp(log(a)) - Hp(log(b+1))  
 

  =R ( )∑
=

⋅+−
oo

k

pk

kk hba
1

,)1log()log(  

 

 

For a visual impression: the top-left aspect of completed matrix H (computed with 

size 32x32) looks like 

 

 H32 =  

 

1.5. An analytical description of the entries of the matrix H 

Reconsidering the Carleman-representation of the problem of the expansion to 

sums of logarithms from single Carleman-operator arguments gave the key for the 

analytic description of the entries in H.  

The Carleman-expression for the transfer log(x)->log(1+x) can also be written as11 

 V(log(x))∙ fS2F ∙ P ∙ fS1F = V(log(x+1)) 

because 

 V(log(x))∙ fS2F  = V(exp(log(x))-1) = V(x-1) 
 V(   x-1  )∙ P   = V(x-1+1) = V(x) 
 V(    x     )∙ fS1F   = V(log(x+1)) 

where the Carleman-matrices fS2f, P, fS1F perform the functional composition of 

the transferfunction t1 in that three steps. 

To arrive at a result of a sum of two vectors we can simply introduce another ma-

trix P 

 V(log(x))∙ fS2F ∙ ( P + P2) ∙ fS1F = V(log(x+1)) + V(log(x+2)) 

and to keep also the identity to let the sum begin at the argument log(x) itself we 

introduce the identity matrix (which is also P0): 

 V(log(x))∙ fS2F ∙ ( I + P + P2) ∙ fS1F = V(log(x)) + V(log(x+1)) + V(log(x+2)) 

Now, to make this an infinite series in the sense of the Hurwitz-analogon we need 

the Neumann-series for the argument P, informally we want some inverse 

 Q = ( I - P )-1  

                                                 
11

 see the display and the description of all used matrices and of their application in formulae in chapter 3 
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but which again has no immediate solution. However, in my 2009-treatize12 I've 

already developed a meaningful solution for this problem, namely the ZETA-

matrix such that we can probably insert: 

 V(log(x))∙ fS2F ∙ ZETA ∙ fS1F = V(log(x)) + V(log(x+1)) + V(log(x+2)) + ...  

Here, the ZETA-matrix contains zeta-values and binomial-coefficients and 

more precisely the coefficients of the integrals of the Bernoulli-

polynomials13 such that for instance we have the linear expansion of two 

vectorial arguments into a finite sum of vectors: 

  (V(a) - V(b+1)) ∙ ZETA = V(a) + V(a+1) + V(a+2) + ... + V(b)  

With this the last part of the product in  

 A = ZETA ∙R  fS1F  where the symbol "∙R" means Ramanujan-summation 
     in the dot-products  

can actually be done analytically using regularization; we have to assign values to 

strongly divergent series like 

 ∑
=

−
−

oo

k

k

k

k

1

)1(
)1(

ζ
 

but which can actually be done/be defined by methods of regularization. This way 

each entry in A results from a formula which can/must analytically be solved in 

the above way.  

That sums can/must be done by Ramanujan-summation; to have a visual impres-

sion of the result, I've computed here the top-left segment of the expected A (de-

noted as A* here) by the Carleman-formulae: 

 H = fS2F ∙ (ZETA ∙R fS1F) where the symbol "∙R" means Ramanujan-summation 
     in the dot-products 
 A* = fS2F-1 ∙ H = ZETA ∙R fS1F 

A* =   

 0! ∙ 1! ∙ 2! ∙ 3! ∙ 4! 

1/0! ∙ 1ξ(0) -1ξ1(0)-0       . 1ξ2(0)+0       .               . -1ξ3(0)  -0               .                      . -1ξ4(0)  -0        . 

1/1! ∙ -1.0 1ξ(1) 1ξ1(1)              . 1ξ2(1)                             . 1ξ3(1) 

1/2! ∙  -1ξ(2) 1ξ1(2)+  1ξ(2) 1ξ2(2)+  1ξ1(2)            . ... 

1/3! ∙  2ξ(3) 2ξ1(3)+  3ξ(3) 2ξ2(3)+  3ξ1(3)+1ξ(3) ... 

1/4! ∙  -6ξ(4) 6ξ1(4)+11ξ(4) 6ξ2(4)+11ξ1(4)+6ξ(4) ... 

... ... ... ... ... ... 

 

where   for s>1  ξd(s) = ζ(d)(s)/d!   
  for s=1  ξd(1) = γd/d!   with γ0 = 0.577216... γ1 = -0.07281...   
  for s=0  ξd(0) = ζ(d)(0)/d!   
 

As an overview, the composition of the coefficients in matrix A* is by  

• unsigned Stirling-numbers first kind, 

• factorials,  

                                                 
12

 see [Helms2009]: "Sums of like powers - a matrix approach..." 

13
 in terms of the Faulhaber-polynomials; we'll use it here in the upper (near) triangular form 
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• Stieltjes constants γk , where the γ0 is also known as Euler-/Mascheroni 

constant  

• derivatives of the ζ() -function of orders from zero up to the column-index 

minus 1.  

 

 

After that we need the composition with Stirlingnumbers of the second kind due 

to the other part of the above product 

 H = fS2F ∙ A 

but which requires then only finite compositions of the entries along the columns 

in A because fS2F is lower triangular. In H the above mentioned coefficients are 

combined only with further coefficients from the  

• Stirlingnumbers second kind. 

 

For instance let's look at the function H1(x). First, the coefficients in the second 

column A,1 are defined by the regularization of the (divergent) dotproducts 

 A1 =R ZETA ∙R fS1F ,1  

and we have for the vector of entries: 

 a0 =  ∑
=

≈−−=
−−oo

k
R

k

k

k

1

662531-0.08106141)0('
)()1(

ζ
ζ

 

 a1 =  ∑
=

−

≈=
−−−








oo

k
R

k

k

kk

1

0

12

577.0
))1(()1(

1
γ

ζ
 

  where γ0 is the first Stieltjes constant (or "Euler-Mascheroni-constant") 

 and the following entries 

 ac =  ∑
=

=
−−









−+

−

oo

ck
R

c

c

c

k

ck

c

k

c

)())((
)1(

1

1 ζζ
 

 

so the vector looks like 

 A1 = [-( ζ(0)'-1) , γ0 , - ζ(2)/2,  ζ(3)/3, -ζ(4)/4, ... ] 

 

After that, taking the premultiplication by fS2F we get H1 

 H,1 = fS2F ∙ A,1 
      and 

 H1(x) = ∑
=

oo

r

r

r xh
0

1,  



Gottfried Helms Sums of like powers of logarithms S. -11- 

Exercises and heuristics with special functions  Mathematical Miniatures 

Here we have then 
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 where s2 are the Stirling numbers 2nd kind and γ the Euler-Mascheroni-constant  
  also used in Ramanujan's replacement for the summation of the ζ(1) 
  (see also the appendix 2.2) 

This decomposition (except the leading one for h0,1) can be crosschecked using the 

software Mathematica at wolframalpha.com when the decomposition of the terms 

in in the function -lngamma(exp(x)) is queried; however, due to the ambivalence 

of expressing the zetas at even arguments by even powers of the number π and 

thus higher zetas as powers of the lower ones one must do manual work to get 

this memorizable pattern.  

For the documentation of the full matrix H see appendix 3.2. 

 

 

 

An interesting additional type of expression can be derived if we evaluate the full 

expression with different association. Having A =R ZETA ∙R fS1F we can then pro-

ceed: 

 V(x) ∙ fS2F ∙ A,1 =  V(x) ∙   ( fS2F ∙ [ζ(0)' ,  -γ, ζ(2)/2,  -ζ(3)/3,  ζ(4)/4, ...]~) 

 and may change order of summation: 

  = ( V(x) ∙ fS2F )    ∙ [ζ(0)' ,  -γ, ζ(2)/2,  -ζ(3)/3,  ζ(4)/4, ...]~ 
  =  [1, ex-1, (ex-1)2, (ex-1)3, ...]  ∙ [ζ(0)' ,  -γ, ζ(2)/2,  -ζ(3)/3,  ζ(4)/4, ...]~ 

 

If we assume ln(1+x) instead of x (which is, what we initially want in this article) 

we can then write 

 (V(ln(1+x)) ∙ fS2F) ∙ A,1 = [1, x, x2, x3, ...] ∙ [ζ(0)', -γ0, ζ(2)/2, -ζ(3)/3, ζ(4)/4, ...]~ 

    = ∑
=

−+⋅−
oo

k

k

k

k
xx

2

0

)(
)()(

ζ
γ  

which is then another expression for the  function H1(log(1+x)) 

 

 

 

 

 



Gottfried Helms Sums of like powers of logarithms S. -12- 

Exercises and heuristics with special functions  Mathematical Miniatures 

1.6. Generalizations/Conclusion 

Just like with the bernoulli/zeta-polynomials we have the option to generalize this 

to fractional values of a and b, and also to non-integer/non-natural differences 

between a and b. 

However, different from the Bernoulli-polynomials for the sums of like powers, in 

the sums-of-like-powers-of-logarithms we do not get polynomials (which have 

finite number of coefficients) but infinite series, which prevents simple "exact" 

expressions or even rational numbers or expressions in simple terms of known 

constants so far. 

 

 

Gottfried Helms 6.9.2016 (minor textual edits) 

8.11.2014   (7.11.2010) 
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2. Appendices 

2.1. Pari/Gp Code 

1) Computation of the Carlemanmatrix for t(x) of size nxn  

  \\ transferfunktion  
t(x)= log(1+exp(x))   \\ t:  log(x) -> log(1+x) 
 
n = 32 
T = carleman(vector(n,r,aeta(2-r)/(r-1)!))  \\"aeta" und "carleman" are user- 
                                            \\ defined functions 
 
\\ 2) computation of the pseudoinverse S of T  
   tmp1 = matid(n+1)-carleman(vector(n+1,r,aeta(2-r)/(r-1)!)    
   tmp2 = matrix(n,n,r,c,tmp1[r,c+1]) 
   tmp3 = tmp2^-1 
 
S    = matrix(n,n,r,c,if(r>1,tmp3[r-1,c]))  
                  \\ here in S the first row is zero and must be filled later 
 

2) Computation of the Stieltjes numbers for the derivatives of the zeta(0)  

\\ fill the first row of S with derivatives of zeta(0) 
   \\ a) compute Stieltjes-numbers to high precision 
       default(seriesprecision,n) 
       pse = sumalt(k=0,(-1)^k*1/(1+k)^x)  \\ powerseries for aeta(x) 
       psz = 1/(1-2^(1-x))*pse             \\ powerseries for zeta(x)    
       pcz = polcoeffs(psz,n)              \\ coeffs for zeta(x) 
             \\ the Taylor/Laurent-series-coefficients of a power series 
             \\ are its derivatives at x=0, scaled by factorials, so we can 
             \\ simply use them for the derivatives of zeta(0): 
 
       S_0 = vector(n,c,(-1)^(c-1)*pcz[c]*(c-1)!) 
                                           \\ equals derivatives of zeta at 0 
 
    S[1,] = S_0  \\ insert derivtives to allow correct results for 
%box >tst VE(S,n,8)     \\ display the top-left-segment 
 

3) Check something more with the derivatives of the zeta at zero 

\\ derivatives of the zeta based on the decomposition 
\\ zeta(s) = zetaInc(s) - 1/(1-s)   where ZetaInc is an "incomplete Zeta" 
\\ check: (compare)  abs(S_0[1+k] == abs(zeta_d(0,k))  
 
        pszInc = psz + 1/(1-x)              \\ powerseries for zetaInc(x)   
        pczInc = polcoeffs(pszInc,n)        \\ coeffs for zetaInc(x) 
 
zetaInc(x) = sum(k=0,#pczInc-1,x^k*pczInc[1+k]) 
{ zetaInc_d(x=2,d=0) = local(a);  \\ d'th deriv. of zeta at small x 
      a = sum(k=0,n-1-d,x^k*pczInc[1+k+d]*binomial(d+k,d));  
    return(a*d!) ; } 
 
{ zeta_d(x=2,d=0) = local(a,b,c);  \\ d'th deriv. of zeta at small x 
      a = zetaInc_d(x,d);  
      b = d!/(1-x)^(d+1) ;    \\ d'th derivative of 1/(1-x) 
      c = a - b; 
    return(c) ; } 
 
\\ alternate form: 
 zeta_d_at0(d) = (-1)^d*sum(k=0,n-1, Stieltjes[1+d+k]/k!) - d!   
 
 %box >tst ESum(0.0)*(dV(log(1))-dV(log(4)))*VE(S,n,8) 
 vector(6,r, log(1)^(r-1)+log(2)^(r-1)+log(3)^(r-1))  \\ compare 
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2.2. Range of convergence for S-function 

The radius of convergence of s1(x) seems to be π; 

this can be seen when we multiply each k'th coeffi-

cient of its powers series with πk by dV(π) ∙ S[,2] 
and check, whether the resulting numbers de-

crease, increase or stay constant. We find, that 

they roughly stay constant. To see this even better, 

we separate the πk-scaled coefficients into 4 

groups and notice, that the sequences along each 

column remain in some order of magnitude: 

coefficient at term k multiplied by πk 

 

 

 

Even more, if we multiply also the current index 

into the number (dZ(-1) ∙ dV(π) ∙ S[,2]) we get the 

constance of the magnitude in the columns even 

more visible:  

 

coefficient at term k multiplied by (k+1)∙πk 
4k 4k+0 4k+1 4k+2 4k+3 

0 0 1.81338 -5.26898 -10.0950 

4 -12.2028 -10.3207 -6.59451 -3.54162 

8 -1.73814 -0.672985 -0.142892 -0.0810845 

16 -0.107840 0.0164950 0.0837811 -0.0317088 

20 -0.0855998 0.0366779 0.0876456 -0.0384842 

24 -0.0909447 0.0369494 0.0946102 -0.0322223 

28 -0.0976286 0.0246398 0.0989107 -0.0148964 

32 -0.0974852 0.00409236 0.0927276 0.00634826 

36 -0.0845708 -0.0148914 0.0736231 0.0202013 

40 -0.0611351 -0.0214660 0.0487870 0.0186391 

44 -0.0383312 -0.0125084 0.0311753 0.00454470 

48 -0.0280286 0.00344328 0.0287250 -0.00975679 

56 -0.0322845 0.0132222 0.0371995 -0.0134470 

60 -0.0418530 0.0108430 0.0449354 -0.00642419 

64 -0.0457314 0.00146129 0.0442041 0.00288276 

68 -0.0408765 -0.00582265 0.0365824 0.00706039 

72 -0.0321879 -0.00673591 0.0283755 0.00527336 

76 -0.0255399 -0.00319998 0.0237931 0.00100185 

80 -0.0230389 0.000953170 0.0230655 -0.00243063 

84 -0.0236186 0.00330984 0.0244421 -0.00355830 

88 -0.0252950 0.00321634 0.0259607 -0.00239162 

96 -0.0262628 0.00125295 0.0260883 -0.0000124348 

100 -0.0254093 -0.00110746 0.0242921 0.00191561 

104 -0.0228853 -0.00229061 0.0213873 0.00220356 

108 -0.0200028 -0.00171849 0.0188986 0.000971317 

112 -0.0181725 -0.000134452 0.0178402 -0.000623243 

116 -0.0178422 0.00116959 0.0180654 -0.00142987 

120 -0.0183716 0.00139611 0.0186314 -0.00111384 

124 -0.0187445 0.000664794 0.0186458 -0.000163678 

128 -0.0183400 -0.000304128 0.0178539 0.000673493 

136 -0.0172096 -0.000823348 0.0165975 0.000894812 

140 -0.0159131 -0.000723632 0.0153776 -0.00740972  

4k 4k+0 4k+1 4k+2 4k+3 

0 0 3.62675 -15.8069 -40.3799 

4 -61.0142 -61.9243 -46.1616 -28.3330 

8 -15.6433 -6.72985 -1.57182 -0.973014 

16 -1.40192 0.230929 1.25672 -0.507340 

20 -1.45520 0.660203 1.66527 -0.769684 

24 -1.90984 0.812887 2.17603 -0.773335 

28 -2.44072 0.640634 2.67059 -0.417099 

32 -2.82707 0.122771 2.87456 0.203144 

36 -2.79084 -0.506307 2.57681 0.727248 

40 -2.26200 -0.815709 1.90269 0.745566 

44 -1.57158 -0.525352 1.34054 0.199967 

48 -1.26129 0.158391 1.35008 -0.468326 

56 -1.58194 0.661109 1.89718 -0.699243 

60 -2.21821 0.585523 2.47144 -0.359755 

64 -2.60669 0.0847547 2.60804 0.172965 

68 -2.49346 -0.361004 2.30469 0.451865 

72 -2.09221 -0.444570 1.90116 0.358588 

76 -1.76225 -0.223999 1.68931 0.0721335 

80 -1.68184 0.0705346 1.72991 -0.184728 

84 -1.81863 0.258167 1.93093 -0.284664 

88 -2.04890 0.263740 2.15474 -0.200896 

96 -2.23234 0.107754 2.26968 -0.00109426 

100 -2.26142 -0.0996711 2.21058 0.176236 

104 -2.12833 -0.215317 2.03180 0.211542 

108 -1.94027 -0.168412 1.87096 0.0971317 

112 -1.83543 -0.0137141 1.83754 -0.0648172 

116 -1.87343 0.123977 1.93300 -0.154426 

120 -2.00250 0.153572 2.06809 -0.124750 

124 -2.11813 0.0757865 2.14427 -0.0189867 

128 -2.14578 -0.0358871 2.12462 0.0808191 

136 -2.08236 -0.100448 2.04149 0.110957 

140 -1.98914 -0.0911777 1.95296 -0.948444  
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2.3. List of used matrices  

All vectors and matrices are assumed of infinite size because they contain the 

coefficients of the involved power series. For the empirical computations using the 

software Pari/GP they are truncated to some size n resp nxn and the empirical 

results are approximative and also often improved by Euler- oder stronger Noer-

lundsummation procedures (implemented again by matrix-formulae). 

Vectors are row-vectors by default; if they are used as diagonal-matrices then this 

is denoted by a small super-prefix d, example: dV(x) , the index begins at zero (so 

for the practical computation one must compensate for the Pari/GP convention 

with 1-based indexes). Also I use the Pari/GP-symbol for transposition : V(x)~  

means a transposed vector/matrix. Reference to a row as vector in a matrix by the 

first index: Mr , reference to a column c as vector M,c . If M has some type-index, so 

is for instance the matrix M1, then the row- and column-indexes are separated by a 

colon: M1:r,c . 

 

Vectors: 

The Vandermonde-vector V(x) contains the consecutive powers of its argument x: 

 V(x) = [1, x, x², x³, ...] // this is a row-vector 

The dot-product of V(x) with some column vector A containing coefficients defines 

a (formal) power series in x ; in the practical computation with finitely truncated 

vectors these are only polynomials of order n-1 if size is n . 

The "factorial" vector F : 

 F = [ 0! ,  1! ,  2! ,  3! , ...] 

The vector of powers of the reciprocals of natural numbers Z(s): 

 Z(s) = [ 1 , 1/2s ,  1/3s ,  1/4s , ... ] 

 

Matrices 

A generic Carleman-matrix14 C is defined to allow a mapping from one Vander-

monde-vector to another and thus allows composition and iteration of functions 

by the simple notation of matrix-equations: 

 [1, x, x2, x3, ... ] ∙ C = [1, f(x), f(x)2, f(x)3, f(x)4, ...] 

or 

 V(x) ∙ C = V( f(x) )  
 V(x) ∙ C2 = V( f(f(x)) )  

It means, that in the second column it contains the coefficients of some (formal) 

power series f(x), and in the following consecutive colums the coefficients of the 

consecutive powers of the power series f(x). The first column is always empty ex-

cept the unit in the first row. This notation of functional composition (and espe-

cially iteration) in terms of Carleman-matrices is due to notational easiness. 

 

 

                                                 
14

 see [WP:Carlemanmatrix]. Note that Eri Jabotinsky introduced the extension of Carleman-matrices to negative indexes, so 

to handle Laurent series in the same framework. But this extension is never done here. 
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The upper triangular Pascal-matrix P, which is the Carleman-matrix for the   

transfer x -> x+1 (by operating on the formal power series):  

 

  P= 

 

Carleman operation: 
 V(x) ∙ P     = V(x+1)  
 V(x) ∙ Pm  = V(x+m)  
 

 

The matrices of Stirling numbers 2nd and 1st kind: 

 

  S2= 

 

  S1= 

 

 

The factorially similarity-scalings fS2F and fS1F, which are the Carleman-matrices 

for the transfers x -> exp(x)-1 and x -> log(1+x) on their formal power series, re-

spectively: 

fS2F=dF-1∙S2∙dF= 

 

Carleman operation: 
 V(x)∙fS2F = V(exp(x)-1) 

fS1F=dF-1∙S2∙dF= 

 

Carleman operation: 
 V(x)∙fS1F = V(log(1+x)) 

 

The ZETA-matrix as representation of the Neumann-series of the matrix P which 

contain the coefficients for the integrals of the Bernoulli-polynomials column-wise 

with the factorially scaled ζ-values at zero and negative arguments in the first row: 

ZETA= 

 

(V(a)-V(a+n))∙ZETA =  
  [ n ,   
 (a+1)+(a+2)+...+(a+n) , 
 (a+1)²+(a+2)²+...+(a+n)² , 
 ... ] 

 

for r≤c  ZETA[r,c] = (c:r)ζ(r-c) 
for r=c+1 ZETA[r,c] = -1/r 
for r>c+1 ZETA[r,c] = 0 
 

where r,c denote the row/col-indices, beginning at 
zero, and (a:b) denotes the binomial-coefficient 
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