
A problem in MSE 

• "How many rationals 
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1. The problem and some useful notations 

First observation is, that the numerator is odd, so also the denominator, thus also n 

must be odd.  

(1) n = 2m+1 

For the following analysis we reformulate (introducing an uninteresting indeterminate 

cofactor x ): 
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We introduce the following general notation of the canonical primefactor-

decomposition for some 2n−1 : 
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Here only odd primefactors pk need be considered.  

 

Formula (2b) becomes then 
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which is also 

(4) 
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 http://math.stackexchange.com/questions/97229/how-many-rationals-of-the-form-large-frac2n1n2-are-integers 

In (3) the exponents are expressed in a problem specific notation which mean: 

 [m:p] "Divisibility" of m by p (like Iverson-brackets) 

  [m:p] = 1     if p divides m, else 0   

 

 {m,p}:=  the exponent, to which the prime p occurs as factor of m 

  {m,p} = a   =>  m=pa∙x  where gcd(x,p)=1   

 

 λ:= the "order of the multiplicative cyclic subgroup modulo p" 

  λ is the smallest k>0 such that the equation [2k−1:p] = 1  holds 

   

 α:= the exponent to which p occurs first in 2k − 1 where k=1,2,3,... 

  {2λ−1,p} = α  

  α is 1 in most cases of pk but α=2 for  p=1093 and p=3511  

  which are the two known "wieferich primes" 

 Note, that λ and α are constants for a given p and independent of n in formula (3) 
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2. Assume only one primefactor in n 

First we try, whether n can be an odd prime or a power of an odd prime. We find, 

using n = pa , according to (4) the following, most general expression for the primefac-

torization: 

(5a) 
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First we rewrite it, where we only leave pk =p explicite and subsume all other prime-

factors in an (uninteresting) indeterminate x: 
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Next this can be simplified because {2pa,pk}={pa,pk} if p and pk are odd primes: 
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and also, since {p
a
,p}=a  
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Because our question (2a) with n=pa has this form 

(5e) xpxp
aapa 22)(12 ==+  

we can equate the exponents and consider now the conditions where 

(6) 2a ≤ ([2pa : λ] -[pa : λ])(α + a) 

By Fermat's little theorem we know that λ must be smaller than p so λ ≤ p-1 and after 

Euler's totient-theorem it must equal or be a divisor of φ(p)=p−1 . 

On the other hand, to have [2pa : λ] -[pa : λ] =1 the first bracket must evaluate to 1 and 

the second to 0, so λ must be even, since p (and so pa) is odd. Moreover, since a num-

ber 1<λ<p cannot be a divisor of p if p is prime, so  

(7a) λ = 2 

From the definitions we have 2λ−1=pα∙x so we know the following: 

(7b) 2λ−1 = 3  ==> p=3   

 α = {2λ−1,p}= {3,3} = 1 ==> α=1 

 n = 3a  (where a is still unknown) 

We get thus from 2a ≤ ([2pa:2]-[pa:2])(α+{pa,p})  the solution for a  

 2a ≤ ([2∙3a :2]-[3a :2])(1+{3a ,3})  = ( 1− 0)(1+a)  =   1+a  

==> 

(7c) a = 1 

and finally for n  

if 2n + 1 = n2 ∙ x 

(8) n = pa = 31 = 3 

and 23+1 =  ∙ 32  

a single solution if we assume n as a'th power of a single odd prime. 
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3. Assume two primefactors in n 

Next we check whether n can be a product of two primes/primepowers. We try 

n=pa∙qb where we assume p<q   

The equation (5a) above changes to 
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and by comparision of exponents (and simplification): 
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We look at (10a). Because p<q it is also λp <q  and thus is neither a factor of p nor of q 

so must be λp=2 again and also immediately p = 3 again. Moreover, because in (10a) 

there is no relevant modification over (6) we get also that a=1, thus n=31qb .  

We insert this in (10b): 
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We look now at (10c) Because λq cannot divide q or qb we have that λq must be a divi-

sor of 6 but not of 3; on the other hand we know that 2λq − 1 = 26 − 1 does not contain 

any other primefactor besides 3 and 7. q cannot be 3, because q > p = 3 by our defini-

tion; and if q=7 then λq=3 and αq=1 . Then we have 
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So, if we assume n had two different primefactors, we get, that the second primefac-

tor q=7 occurs to the zeroth power; thus again we get as the only solution:  

 2n + 1=x ∙ n2     

=> n = 31∙70 = 3 

4. Assume more primefactors in n 

That assumtion leads to a very similar conclusion as before. Let r>q the new primefac-

tor and its exponent c. Then the equations (10a) and (10c) become: 

(12a)  )])(:[]:2([2 arqprqpa pq

cba

p

cba
+⋅⋅−⋅⋅⋅≤ αλλ  

Again λp must be even and cannot divide p,q,r so it must λp=2 and we know, that then 

uniquely p=3, and thus αp=1 and a=1  
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Also λq must be even and because q<r and q and r are prime, λq cannot divide q or r 

and it must λq=6 But there is no primefactor q with λq=6.  

Thus no additional solution for more primefactors in n is possible. 
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Appendix: A solution by G. Woeginger, Internation Math Olympiad (IMO) 19902 

The following is a (slightly reformatted) full citation of a relevant internet-page, see footnote 2 
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 http://www.cs.cornell.edu/~asdas/imo/imo/isoln/isoln903.html 

Problem 3: Determine all integers greater than 1 such that (2
n
 + 1)/n

2
 is an integer.  

Solution by Gerhard Wöginger, Technical University, Graz  
 
Answer: n = 3.  
 
Since 2n + 1 is odd, n must also be odd.  
Let p be its smallest prime divisor.  
Let x be the smallest positive integer such that 2x = -1 (mod p), and let y be the smallest 
positive integer such that 2y = 1 (mod p). y certainly exists and indeed y < p, since 2p-1 = 1 
(mod p). x exists since 2n = -1 (mod p).  
Write n = ys + r, with 0 <= r < y. Then - 1 = 2n = (2y)s2r = 2r (mod p), so x <= r < y (r cannot 
be 0, since - 1 is not 1 (mod p) ).  
Now write n = hx + k, with 0 <= k < x. Then -1 = 2n = (-1)h2k (mod p). Suppose k > 0. Then if 
h is odd we contradict the minimality of y, and if h is even we contradict the minimality of x. 
So k = 0 and x divides n. But x < p and p is the smallest prime dividing n, so x = 1. Hence 2 
= -1 (mod p) and so p = 3.  
Now suppose that 3m is the largest power of 3 dividing n. We show that m must be 1. Ex-
pand (3 - 1)n + 1 by the binomial theorem, to get (since n is odd):   1 - 1 + n.3 - 1/2 n(n - 1) 
32 + ... = 3n - (n - 1)/2 n 32 + ... . Evidently 3n is divisible by 3m+1, but not 3m+2. We show that 
the remaining terms are all divisible by 3m+2. It follows that 3m+1 is the highest power 3 divid-
ing 2n + 1. But 2n + 1 is divisible by n2 and hence by 32m, so m must be 1.  
 
The general term is (3ma)Cb 3b, for b >= 3. The binomial coefficients are integral, so the 
term is certainly divisible by 3m+2 for b >= m+2. We may write the binomial coefficient as 
(3ma/b) (3m - 1)/1 (3m - 2)/2 (3m - 3)/3 ... (3m - (b-1)) / (b - 1). For b not a multiple of 3, the 
first term has the form 3m c/d, where 3 does not divide c or d, and the remaining terms have 
the form c/d, where 3 does not divide c or d. So if b is not a multiple of 3, then the binomial 
coefficient is divisible by 3m, since b > 3, this means that the whole term is divisible by at 
least 3m+3. Similarly, for b a multiple of 3, the whole term has the same maximum power of 
3 dividing it as 3m 3b/b. But b is at least 3, so 3b/b is divisible by at least 9, and hence the 
whole term is divisible by at least 3m+2.  
 
We may check that n = 3 is a solution. If n > 3, let n = 3 t and let q be the smallest prime 
divisor of t. Let w be the smallest positive integer for which 2w = -1 (mod q), and v the 
smallest positive integer for which 2v = 1 (mod q). v certainly exists and < q since 2q-1 = 1 
(mod q). 2n = -1 (mod q), so w exists and, as before, w < v.  
Also as before, we conclude that w divides n.  
But w < q, the smallest prime divisor of n, except 3. So w = 1 or 3. These do not work, be-
cause then 2 = -1 (mod q) and so q = 3, or 23 = -1 (mod q) and again q =3, whereas we 
know that q > 3.  

The solutions given on this site are not always complete, they are designed to be sufficient for anyone who has thought hard 
about the problem. 
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