Real roots of the
polynomials f_k(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The roots are computed
using Pari/GP, 200 digits float precision |
|
|
|
|
|
|
|
|
|
1) There is always one
special root r_0. This approximates (k+1)/log(2)+1/2, and thus should never
be integer |
|
|
|
|
see the computation in the column check.
It is (r_0-1/2)*log(2) +1. The approximation is very fast. |
|
|
|
|
|
|
|
|
|
2) The various other
real roots seem to converge to integer and half-integer values. If they dont
cross an integer while approximation |
|
|
|
|
they can never be integer |
|
|
|
|
|
|
|
|
|
3) There are some
inconsistencies(?, see the pink marker), where roots were expected by the
(mod 4)-rhythm. |
|
|
|
|
Possibly these are incorrect
approximations by float-point-calculation. Thus also the complex-roots should
be cross-checked |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Polynomials f_k(x) , k==
1 (mod 4) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
K= |
|
various roots r_1 to
r_(k/4) |
|
|
|
|
|
|
|
|
|
|
|
|
|
r_0 |
Check r_0 |
1 |
roots(f1(x)= |
|
1.0000 |
1.3466 |
5 |
roots(f5(x)= |
|
-1.2220 |
-1 |
|
6.2712 |
5.0003 |
9 |
roots(f9(x)= |
|
-1.4287 |
-1 |
|
12.0418 |
9.0002 |
13 |
roots(f13(x)= |
|
-1.4982 |
-1 |
-0.4990 |
-0.2351 |
|
17.8125 |
13.0001 |
17 |
roots(f17(x)= |
|
-1.5000 |
-1 |
-0.5000 |
-0.0566 |
|
23.5833 |
17.0001 |
21 |
roots(f21(x)= |
|
-2.2030 |
-2.0041 |
-1.5 |
-1 |
-0.5 |
-0.0018 |
|
29.3540 |
21.0001 |
25 |
roots(f25(x)= |
|
-2.4088 |
-2.0000 |
-1.5 |
-1 |
-0.5 |
0.0000 |
|
35.1248 |
25.0001 |
29 |
roots(f29(x)= |
|
-2.4944 |
-2.0000 |
-1.5 |
-1 |
-0.5 |
0.0000 |
0.5033 |
0.7254 |
|
40.8956 |
29.0001 |
33 |
roots(f33(x)= |
|
-2.4999 |
-2 |
-1.5 |
-1 |
-0.5 |
0.0000 |
0.5000 |
0.9199 |
|
46.6663 |
33.0001 |
37 |
roots(f37(x)= |
|
-3.1458 |
-3.0126 |
-2.5000 |
-2 |
-1.5 |
-1 |
-0.5 |
0.0000 |
0.5000 |
0.9954 |
|
52.4371 |
37.0000 |
41 |
roots(f41(x)= |
|
-3.3759 |
-3.0001 |
-2.5 |
-2 |
-1.5 |
-1 |
-0.5 |
0.0000 |
0.5 |
0.9999 |
|
58.2079 |
41.0000 |
45 |
roots(f45(x)= |
|
-3.4872 |
-3.0000 |
-2.5 |
-2 |
-1.5 |
-1 |
-0.5 |
0.0000 |
0.5 |
1.0000 |
1.5095 |
1.6671 |
|
63.9786 |
45.0000 |
49 |
roots(f49(x)= |
|
-3.4998 |
-3 |
-2.5 |
-2 |
-1.5 |
-1 |
-0.5 |
0.0000 |
0.5 |
1 |
1.5001 |
1.8867 |
|
69.7494 |
49.0000 |
53 |
roots(f53(x)= |
|
|
-3.5000 |
-3 |
-2.5 |
-2 |
-1.5 |
-1 |
-0.5 |
0.0000 |
0.5 |
1 |
1.5000 |
1.9893 |
|
75.5202 |
53.0000 |
57 |
roots(f57(x)= |
|
-4.3347 |
-4.0004 |
-3.5 |
-3 |
-2.5 |
-2 |
-1.5 |
-1 |
-0.5 |
0.0000 |
0.5 |
1 |
1.5 |
1.9998 |
|
81.2910 |
57.0000 |
61 |
roots(f61(x)= |
|
-4.4737 |
-4.0000 |
-3.5 |
-3 |
-2.5 |
-2 |
-1.5 |
-1 |
-0.5 |
0.0000 |
0.5 |
1 |
1.5 |
2.0000 |
2.5446 |
2.5709 |
87.0617 |
61.0000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Polynomials f_k(x) , k==
2 (mod 4) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
K= |
|
|
various roots r_1 to
r_(k/4) |
|
|
|
|
|
|
|
|
|
|
|
|
|
r_0 |
Check r_0 |
2 |
roots(f2(x)= |
|
-1 |
|
2.0000 |
2.0397 |
6 |
roots(f6(x)= |
|
-1.3058 |
-1 |
-1 |
|
7.7139 |
6.0003 |
10 |
roots(f10(x)= |
|
-1.5774 |
-1 |
-1 |
|
13.4845 |
10.0002 |
14 |
roots(f14(x)= |
|
-1.7736 |
-1 |
-1 |
|
19.2552 |
14.0001 |
18 |
roots(f18(x)= |
|
-1.9141 |
-1 |
-1 |
|
25.0260 |
18.0001 |
22 |
roots(f22(x)= |
|
-2.2741 |
-2.0245 |
-1.9840 |
-1 |
-1 |
|
30.7967 |
22.0001 |
26 |
roots(f26(x)= |
|
-2.5460 |
-2.0014 |
-1.9987 |
-1 |
-1 |
|
36.5675 |
26.0001 |
30 |
roots(f30(x)= |
|
-2.7453 |
-2.0001 |
-1.9999 |
-1 |
-1 |
|
42.3382 |
30.0001 |
34 |
roots(f34(x)= |
|
-2.8925 |
-2.0000 |
-2.0000 |
-1 |
-1 |
|
48.1090 |
34.0001 |
38 |
roots(f38(x)= |
|
-3.1936 |
-3.0543 |
-2.9741 |
-2.0000 |
-2.0000 |
-1 |
-1 |
|
53.8798 |
38.0000 |
42 |
roots(f42(x)= |
|
-3.4981 |
-3.0035 |
-2.9968 |
-2 |
-2 |
-1 |
-1 |
|
59.6506 |
42.0000 |
46 |
roots(f46(x)= |
|
-3.7072 |
-3.0003 |
-2.9997 |
-2 |
-2 |
-1 |
-1 |
|
65.4213 |
46.0000 |
50 |
roots(f50(x)= |
|
-3.8654 |
-3.0000 |
-3.0000 |
-2 |
-2 |
-1 |
-1 |
|
71.1921 |
50.0000 |
54 |
roots(f54(x)= |
|
|
-3.9616 |
-3.0000 |
-3.0000 |
-2 |
-2 |
-1 |
-1 |
|
76.9629 |
54.0000 |
58 |
roots(f58(x)= |
|
-4.4422 |
-4.0066 |
-3.9941 |
-3.0000 |
-3.0000 |
-2 |
-2 |
-1 |
-1 |
|
82.7337 |
58.0000 |
62 |
roots(f62(x)= |
|
-4.6637 |
-4.0006 |
-3.9994 |
-3 |
-3 |
-2 |
-2 |
-1 |
-1 |
|
88.5044 |
62.0000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Polynomials f_k(x) , k==
3 (mod 4) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
K= |
|
|
various roots r_1 to
r_(k/4) |
|
|
|
|
|
|
|
|
|
|
|
|
|
r_0 |
Check r_0 |
3 |
roots(f3(x)= |
|
-1 |
-0.8860 |
|
3.3860 |
3.0004 |
7 |
roots(f7(x)= |
|
-1 |
-0.6279 |
|
9.1565 |
7.0002 |
11 |
roots(f11(x)= |
|
-1 |
-0.5105 |
|
14.9272 |
11.0002 |
15 |
roots(f15(x)= |
|
-1.835 |
-1.500 |
-1 |
-0.5001 |
|
20.6979 |
15.0001 |
19 |
roots(f19(x)= |
|
-1.976 |
-1.500 |
-1 |
-0.5000 |
0.0327 |
0.0891 |
|
|
26.4686 |
19.0001 |
23 |
roots(f23(x)= |
|
-2.000 |
-1.5 |
-1 |
-0.5 |
0.0002 |
0.3538 |
|
|
32.2394 |
23.0001 |
27 |
roots(f27(x)= |
|
-2.000 |
-1.5 |
-1 |
-0.5 |
7E-07 |
0.4809 |
|
|
38.0102 |
27.0001 |
31 |
roots(f31(x)= |
|
-2.8000 |
-2.5006 |
-2 |
-1.5 |
-1 |
-0.5 |
2E-09 |
0.4997 |
|
|
43.7809 |
31.0001 |
35 |
roots(f35(x)= |
|
-2.9596 |
-2.5000 |
-2 |
-1.5 |
-1 |
-0.5 |
2E-12 |
0.5000 |
|
|
|
49.5517 |
35.0001 |
39 |
roots(f39(x)= |
|
-2.9989 |
-2.5 |
-2 |
-1.5 |
-1 |
-0.5 |
2E-15 |
0.5000 |
1.0006 |
1.3150 |
|
|
55.3225 |
39.0000 |
43 |
roots(f43(x)= |
|
-3.0000 |
-2.5 |
-2 |
-1.5 |
-1 |
-0.5 |
1E-18 |
0.5 |
1.0000 |
1.4655 |
|
|
61.0933 |
43.0000 |
47 |
roots(f47(x)= |
|
-3.7523 |
-3.5020 |
-3.0000 |
-2.5 |
-2 |
-1.5 |
-1 |
-0.5 |
5E-22 |
0.5 |
1 |
1.4991 |
|
|
66.8640 |
47.0000 |
51 |
roots(f51(x)= |
|
-3.9346 |
-3.5000 |
-3 |
-2.5 |
-2 |
-1.5 |
-1 |
-0.5 |
1E-25 |
0.5 |
1 |
1.5000 |
|
|
72.6348 |
51.0000 |
55 |
roots(f55(x)= |
|
-3.9970 |
-3.5000 |
-3 |
-2.5 |
-2 |
-1.5 |
-1 |
-0.5 |
3E-29 |
0.5 |
1 |
1.5000 |
2.0016 |
2.2667 |
|
78.4056 |
55.0000 |
59 |
roots(f59(x)= |
|
-4.0000 |
-3.5 |
-3 |
-2.5 |
-2 |
-1.5 |
-1 |
-0.5 |
4E-33 |
0.5 |
1 |
1.5 |
2.0000 |
2.4418 |
|
84.1764 |
59.0000 |
63 |
roots(f63(x)= |
|
-4.6940 |
-4.5058 |
-4.0000 |
-3.5 |
-3 |
-2.5 |
-2 |
-1.5 |
-1 |
-0.5 |
5E-37 |
0.5 |
1 |
1.5 |
2.0000 |
2.4975 |
|
89.9471 |
63.0000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Polynomials f_k(x) , k==
0 (mod 4) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
K= |
|
|
various roots r_1 to
r_(k/4) |
|
|
|
|
|
|
|
|
|
|
|
|
|
r_0 |
Check r_0 |
4 |
roots(f4(x)= |
|
-1 |
-1 |
-0.8284 |
|
4.8284 |
4.0002 |
8 |
roots(f8(x)= |
|
-1 |
-1 |
-0.4957 |
|
10.5992 |
8.0002 |
12 |
roots(f12(x)= |
|
-1 |
-1 |
-0.2836 |
|
16.3699 |
12.0001 |
16 |
roots(f16(x)= |
|
-1 |
-1 |
-0.1262 |
|
22.1406 |
16.0001 |
20 |
roots(f20(x)= |
|
-1 |
-1 |
-0.0321 |
|
|
27.9113 |
20.0001 |
24 |
roots(f24(x)= |
|
-1 |
-1 |
-0.0036 |
0.0039 |
0.4709 |
|
|
33.6821 |
24.0001 |
28 |
roots(f28(x)= |
|
-1 |
-1 |
-0.0002 |
0.0002 |
0.6868 |
|
|
39.4529 |
28.0001 |
32 |
roots(f32(x)= |
|
-1 |
-1 |
-1E-05 |
1E-05 |
0.8506 |
|
|
45.2236 |
32.0001 |
36 |
roots(f36(x)= |
|
-1 |
-1 |
-4E-07 |
4E-07 |
0.9546 |
|
|
|
50.9944 |
36.0001 |
40 |
roots(f40(x)= |
|
-1 |
-1 |
-1E-08 |
1E-08 |
0.9929 |
1.008 |
1.4181 |
|
|
56.7652 |
40.0000 |
44 |
roots(f44(x)= |
|
-1 |
-1 |
-2E-10 |
2E-10 |
0.9993 |
1.001 |
1.6457 |
|
|
62.5359 |
44.0000 |
48 |
roots(f48(x)= |
|
-1 |
-1 |
-4E-12 |
4E-12 |
0.9999 |
1.000 |
1.8199 |
|
|
68.3067 |
48.0000 |
52 |
roots(f52(x)= |
|
-1 |
-1 |
-7E-14 |
7E-14 |
1.0000 |
1.000 |
1.9375 |
|
|
74.0775 |
52.0000 |
56 |
roots(f56(x)= |
|
-1 |
-1 |
-1E-15 |
1E-15 |
1.0000 |
1.000 |
1.9882 |
2.0151 |
2.3552 |
|
79.8483 |
56.0000 |
60 |
roots(f60(x)= |
|
-1 |
-1 |
-1E-17 |
1E-17 |
1.0000 |
1 |
1.9986 |
2.0014 |
2.5985 |
|
85.6191 |
60.0000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|