Inverse of the matrix of coefficients of f_k(x)
*  The matrix of coefficients of f_k(x) is inverted
*  The columns define then some sequences, which can be found in OEIS
                                                                                   
Matrix( f_k(x) )^-1                                                                                
g0(x)= -1           .           .           .          .         .         .        .       .      .    .    .
g1(x)= -1 1           .           .          .         .         .        .       .      .    .    .
g2(x)= -3 1 2           .          .         .         .        .       .      .    .    .
g3(x)= -13 7 3 3          .         .         .        .       .      .    .    .
g4(x)= -75 37 28 6 4         .         .        .       .      .    .    .
g5(x)= -541 271 185 70 10 5         .        .       .      .    .    .
g6(x)= -4683 2341 1626 555 140 15 6        .       .      .    .    .
g7(x)= -47293 23647 16387 5691 1295 245 21 7       .      .    .    .
g8(x)= -545835 272917 189176 65548 15176 2590 392 28 8      .    .    .
g9(x)= -7087261 3543631 2456253 851292 196644 34146 4662 588 36 9    .    .
g10(x)= -102247563 51123781 35436310 12281265 2837640 491610 68292 7770 840 45 10    .
g11(x)= -1622632573 811316287 562361591 194899705 45031305 7803510 1081542 125202 12210 1155 55 11
... ...                      
OEIS: A000670  A089677                     
a few Observations:
1 The rowsums are zero (except for the first one)
2 second column minus tail is 1,-1,1,-1,1,-1
3 roughly similar column-schemes seem to exist with weighted column-sums
4 Subdiagonals from column 2 on are binomial multiples of the leading subdiagonal-entry in column 1
Observation 4:
g0(x)= -1           .           .           .          .         .         .        .       .      .    .    .
g1(x)= -1 1*1           .           .          .         .         .        .       .      .    .    .
g2(x)= -3 1*1 2*1           .          .         .         .        .       .      .    .    .
g3(x)= -13 1*7 3*1 3*1          .         .         .        .       .      .    .    .
g4(x)= -75 1*37 4*7 6*1 4*1         .         .        .       .      .    .    .
g5(x)= -541 1*271 5*37 10*7 10*1 5*1         .        .       .      .    .    .
g6(x)= -4683 1*2341 6*271 15*37 20*7 15*1 6*1        .       .      .    .    .
                         
                                                                                   
References in OEIS:                                                                              
A000670   Number of preferential arrangements of n labeled elements; or number of weak orders on n labeled elements.        
  1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247563, 1622632573,
COMMENT
1 Number of ways n competitors can rank in a competition, allowing for the possibility of ties.
2 Also number of asymmetric generalized weak orders on n points.
3 Also called the ordered Bell numbers, i.e. the number of ordered partitions of {1,..,n}.
4 A weak order is a relation that is transitive and complete.
5 Called Fubini numbers by Comtet: counts formulae in Fubini theorem when switching the order of summation in multiple sums. - Olivier Gerard, Sep 30, 2002
6 If the points are unlabeled then the answer is a(0) = 1, a(n) = 2^(n-1) (cf. A011782).
7 For n>0, a(n) is the number of elements in the Coxeter complex of type A_{n-1}. The corresponding sequence for type B is A080253 and there one can find a worked example as well as a geometric interpretation. - Tim Honeywill & Paul Boddington (tch(AT)maths.warwick.ac.uk), Feb 10 2003
8 Also number of labeled (1+2)-free posets. - Detlef Pauly, May 25 2003
9 Also the number of chains of subsets starting with the empty set and ending with a set of n distinct objects. - Andy Niedermaier (aniedermaier(AT)hmc.edu), Feb 20 2004
10 Stirling transform of A007680(n) = [3, 10, 42, 216, . . . ] gives [3,13,75,541,...]. - Michael Somos Mar 04 2004
11 Stirling transform of a(n)=[1,3,13,75,...] is A083355(n)=[1,4,23,175,...]. - Michael Somos Mar 04 2004
12 Stirling transform of A000142(n)=[1,2,6,24,120,...] is a(n)=[1,3,13,75,...]. - Michael Somos Mar 04 2004
13 Stirling transform of A005359(n-1)=[1,0,2,0,24,0,...] is a(n-1)=[1,1,3,13,75,...]. - Michael Somos Mar 04 2004
14 Stirling transform of A005212(n-1)=[0,1,0,6,0,120,0,...] is a(n-1)=[0,1,3,13,75,...]. - Michael Somos Mar 04 2004
15 Unreduced denominators in convergent to log(2) = lim[n->inf, na(n-1)/a(n)].
16 a(n) congruent a(n+(p-1)p^(h-1)) (mod p^h) for n>=h (see Barsky).
17 Stirling-Bernoulli transform of 1/(1-x^2). - Paul Barry (pbarry(AT)wit.ie), Apr 20 2005
18 This is the sequence of moments of the probability distribution of the number of tails before the first head in a sequence of fair coin tosses. The sequence of cumulants of the same probability distribution is A000629. That sequence is 2 times the result of deletion of the first term of this sequence. - Michael Hardy (hardy(AT)math.umn.edu), May 01 2005
19 With p(n) = the number of integer partitions of n, p(i) = the number of parts of the i-th partition of n, d(i) = the number of different parts of the i-th partition of n, p(j,i) = the j-th part of the i-th partition of n, m(i,j) = multiplicity of the j-th part of the i-th partition of n, sum_{i=1}^{p(n)} = sum over i, and prod_{j=1}^{d(i)} = product over j one has: a(n) = sum_{i=1}^{p(n)} (n!/(prod_{j=1}^{p(i)}p(i,j)!)) * (p(i)!/(prod_{j=1}^{d(i)} m(i,j)!)) - Thomas Wieder (wieder.thomas(AT)t-online.de), May 18 2005
20 The number of chains among subsets of [n]. The summed term in the new formula is the number of such chains of length k. - Micha Hofri (hofri(AT)wpi.edu), Jul 01 2006
A089677   Exponential convolution of A000670(n), with A000670(0)=0, with the sequence of all ones alternating in sign.         
  0, 1, 1, 7, 37, 271, 2341, 23647, 272917, 3543631, 51123781, 811316287,
COMMENT
1 Stirling transform of A005212(n)=[1,0,6,0,120,0,5040,...] is a(n)=[1,1,7,37,271,...]. - Michael Somos Mar 04 2004
 
FORMULA
1 E.g.f.  (exp(x)-1)/(exp(x)*(2-exp(x))). a(n)=Sum(Binomial(n, k)(-1)^(n-k)Sum(i! Stirling2(k, i), i=1, ..k), k=0, .., n).
2 MATHEM'CA Table[Sum[Binomial[n, k](-1)^(n-k)Sum[i! StirlingS2[k, i], {i, 1, k}], {k, 0, n}], {n, 0, 20}]
3 PARI/GP a(n)=if(n<0, 0, n!*polcoeff(subst(y/(1-y^2), y, exp(x+x*O(x^n))-1), n))