For MSE http://math.stackexchange.com/questions/208996/half-iterate-of-x2c
Table 1) of half-iterates of f(x) = x² + 1/4, for x=0.5 ... 5.5
We take 100 different x0 in the stepwith of 0.05 beginning at x=0.5 (the fixpoint as lower bound). For each of that x0 we determine the half-iterate x0.5 using the Abel-function (fAbel as in the MSE-posting). For the Abel-function we need recentering of x (by -0.5); also to make the Abel-function best converging we iterate j-times towards the fixpoint 0.5 until x-j is smaller than 0.51. Then we apply the Abel-function (fAbel) and get the value a-j. Increasing by the height 0.5 the inverse Abelfunction gives us the half iterate of the (recentered) x. Also reversing the initial iteration leads then to the value x0.5 in the second column.
|
x0 |
x0.5 |
h |
x-j <=0.51 |
fAbel(x-j-0.5) |
x-j+0.5 |
0 |
0.5 |
0.5 |
0.5 |
0 |
---- |
0 |
1 |
0.5500 |
0.551220221021 |
0.5000 |
0.509959586535 |
133.019941329 |
0.509910716366 |
2 |
0.6000 |
0.604772246757 |
0.5000 |
0.509927314669 |
133.349571564 |
0.509878758400 |
3 |
0.6500 |
0.660513076737 |
0.5000 |
0.509997805211 |
132.632308338 |
0.509948562011 |
4 |
0.7000 |
0.718321237354 |
0.5000 |
0.509991267832 |
132.698404498 |
0.509942088539 |
5 |
0.7500 |
0.778092005234 |
0.5000 |
0.509913168187 |
133.494739396 |
0.509864749203 |
6 |
0.8000 |
0.839733963915 |
0.5000 |
0.509994633448 |
132.664365697 |
0.509945421259 |
7 |
0.8500 |
0.903166460208 |
0.5000 |
0.509956452358 |
133.051861104 |
0.509907612719 |
8 |
0.9000 |
0.968317683702 |
0.5000 |
0.509905041674 |
133.578318349 |
0.509856701467 |
9 |
0.9500 |
1.03512318842 |
0.5000 |
0.509942006137 |
133.199246399 |
0.509893307091 |
10 |
1.000 |
1.10352473518 |
0.5000 |
0.509972605557 |
132.887563844 |
0.509923608474 |
11 |
1.050 |
1.17346937130 |
0.5000 |
0.509998449989 |
132.625793974 |
0.509949200483 |
12 |
1.100 |
1.24490868889 |
0.5000 |
0.509922188699 |
133.402125463 |
0.509873682197 |
13 |
1.150 |
1.31779821998 |
0.5000 |
0.509941122876 |
133.208271555 |
0.509892432420 |
14 |
1.200 |
1.39209693773 |
0.5000 |
0.509957789994 |
133.038235616 |
0.509908937326 |
15 |
1.250 |
1.46776684116 |
0.5000 |
0.509972605557 |
132.887563844 |
0.509923608474 |
16 |
1.300 |
1.54477260629 |
0.5000 |
0.509985886793 |
132.752874096 |
0.509936760072 |
17 |
1.350 |
1.62308129071 |
0.5000 |
0.509997880426 |
132.631548379 |
0.509948636490 |
18 |
1.400 |
1.70266208158 |
0.5000 |
0.509910562230 |
133.521526085 |
0.509862168515 |
19 |
1.450 |
1.78348607912 |
0.5000 |
0.509920333288 |
133.421161342 |
0.509871844794 |
20 |
1.500 |
1.86552610963 |
0.5000 |
0.509929310660 |
133.329122322 |
0.509880735005 |
21 |
1.550 |
1.94875656285 |
0.5000 |
0.509937596620 |
133.244318738 |
0.509888940450 |
22 |
1.600 |
2.03315324992 |
0.5000 |
0.509945276014 |
133.165848685 |
0.509896545163 |
23 |
1.650 |
2.11869327860 |
0.5000 |
0.509952419875 |
133.092959044 |
0.509903619500 |
24 |
1.700 |
2.20535494330 |
0.5000 |
0.509959088171 |
133.025015541 |
0.509910222857 |
25 |
1.750 |
2.29311762756 |
0.5000 |
0.509965331916 |
132.961479827 |
0.509916405760 |
26 |
1.800 |
2.38196171736 |
0.5000 |
0.509971194810 |
132.901891708 |
0.509922211487 |
27 |
1.850 |
2.47186852372 |
0.5000 |
0.509976714524 |
132.845855218 |
0.509927677352 |
28 |
1.900 |
2.56282021339 |
0.5000 |
0.509981923729 |
132.793027601 |
0.509932835710 |
29 |
1.950 |
2.65479974653 |
0.5000 |
0.509986850912 |
132.743110500 |
0.509937714774 |
30 |
2.000 |
2.74779082048 |
0.5000 |
0.509991521037 |
132.695842867 |
0.509942339269 |
31 |
2.050 |
2.84177781903 |
0.5000 |
0.509995956085 |
132.650995198 |
0.509946730965 |
32 |
2.100 |
2.93674576629 |
0.5000 |
0.509902123447 |
133.608364815 |
0.509853811514 |
33 |
2.150 |
3.03268028483 |
0.5000 |
0.509906066382 |
133.567771984 |
0.509857716245 |
34 |
2.200 |
3.12956755754 |
0.5000 |
0.509909829857 |
133.529056694 |
0.509861443242 |
35 |
2.250 |
3.22739429272 |
0.5000 |
0.509913427375 |
133.492075965 |
0.509865005877 |
36 |
2.300 |
3.32614769218 |
0.5000 |
0.509916871057 |
133.456701601 |
0.509868416157 |
37 |
2.350 |
3.42581542195 |
0.5000 |
0.509920171821 |
133.422818279 |
0.509871684893 |
38 |
2.400 |
3.52638558534 |
0.5000 |
0.509923339525 |
133.390321946 |
0.509874821852 |
39 |
2.450 |
3.62784669814 |
0.5000 |
0.509926383100 |
133.359118441 |
0.509877835877 |
40 |
2.500 |
3.73018766572 |
0.5000 |
0.509929310660 |
133.329122322 |
0.509880735005 |
41 |
2.550 |
3.83339776189 |
0.5000 |
0.509932129591 |
133.300255858 |
0.509883526552 |
42 |
2.600 |
3.93746660925 |
0.5000 |
0.509934846635 |
133.272448159 |
0.509886217194 |
43 |
2.650 |
4.04238416106 |
0.5000 |
0.509937467963 |
133.245634420 |
0.509888813043 |
44 |
2.700 |
4.14814068433 |
0.5000 |
0.509939999231 |
133.219755269 |
0.509891319701 |
45 |
2.750 |
4.25472674407 |
0.5000 |
0.509942445635 |
133.194756197 |
0.509893742316 |
46 |
2.800 |
4.36213318872 |
0.5000 |
0.509944811963 |
133.170587055 |
0.509896085626 |
47 |
2.850 |
4.47035113643 |
0.5000 |
0.509947102628 |
133.147201618 |
0.509898354005 |
48 |
2.900 |
4.57937196232 |
0.5000 |
0.509949321709 |
133.124557201 |
0.509900551491 |
49 |
2.950 |
4.68918728652 |
0.5000 |
0.509951472982 |
133.102614316 |
0.509902681825 |
50 |
3.000 |
4.79978896302 |
0.5000 |
0.509953559949 |
133.081336371 |
0.509904748475 |
51 |
3.050 |
4.91116906916 |
0.5000 |
0.509955585861 |
133.060689402 |
0.509906754660 |
52 |
3.100 |
5.02331989580 |
0.5000 |
0.509957553745 |
133.040641839 |
0.509908703378 |
53 |
3.150 |
5.13623393805 |
0.5000 |
0.509959466417 |
133.021164289 |
0.509910597419 |
54 |
3.200 |
5.24990388660 |
0.5000 |
0.509961326507 |
133.002229350 |
0.509912439386 |
55 |
3.250 |
5.36432261947 |
0.5000 |
0.509963136469 |
132.983811437 |
0.509914231711 |
56 |
3.300 |
5.47948319435 |
0.5000 |
0.509964898602 |
132.965886634 |
0.509915976669 |
57 |
3.350 |
5.59537884124 |
0.5000 |
0.509966615055 |
132.948432557 |
0.509917676389 |
58 |
3.400 |
5.71200295561 |
0.5000 |
0.509968287845 |
132.931428223 |
0.509919332871 |
59 |
3.450 |
5.82934909190 |
0.5000 |
0.509969918867 |
132.914853949 |
0.509920947988 |
60 |
3.500 |
5.94741095729 |
0.5000 |
0.509971509899 |
132.898691242 |
0.509922523503 |
61 |
3.550 |
6.06618240594 |
0.5000 |
0.509973062616 |
132.882922714 |
0.509924061074 |
62 |
3.600 |
6.18565743345 |
0.5000 |
0.509974578594 |
132.867531993 |
0.509925562263 |
63 |
3.650 |
6.30583017156 |
0.5000 |
0.509976059321 |
132.852503653 |
0.509927028542 |
64 |
3.700 |
6.42669488324 |
0.5000 |
0.509977506199 |
132.837823140 |
0.509928461301 |
65 |
3.750 |
6.54824595795 |
0.5000 |
0.509978920554 |
132.823476715 |
0.509929861852 |
66 |
3.800 |
6.67047790709 |
0.5000 |
0.509980303639 |
132.809451389 |
0.509931231436 |
67 |
3.850 |
6.79338535980 |
0.5000 |
0.509981656640 |
132.795734879 |
0.509932571227 |
68 |
3.900 |
6.91696305883 |
0.5000 |
0.509982980679 |
132.782315554 |
0.509933882339 |
69 |
3.950 |
7.04120585671 |
0.5000 |
0.509984276822 |
132.769182392 |
0.509935165825 |
70 |
4.000 |
7.16610871201 |
0.5000 |
0.509985546079 |
132.756324940 |
0.509936422686 |
71 |
4.050 |
7.29166668584 |
0.5000 |
0.509986789410 |
132.743733277 |
0.509937653872 |
72 |
4.100 |
7.41787493848 |
0.5000 |
0.509988007725 |
132.731397981 |
0.509938860286 |
73 |
4.150 |
7.54472872617 |
0.5000 |
0.509989201891 |
132.719310093 |
0.509940042785 |
74 |
4.200 |
7.67222339803 |
0.5000 |
0.509990372733 |
132.707461093 |
0.509941202187 |
75 |
4.250 |
7.80035439313 |
0.5000 |
0.509991521037 |
132.695842867 |
0.509942339269 |
76 |
4.300 |
7.92911723769 |
0.5000 |
0.509992647551 |
132.684447690 |
0.509943454773 |
77 |
4.350 |
8.05850754237 |
0.5000 |
0.509993752988 |
132.673268193 |
0.509944549406 |
78 |
4.400 |
8.18852099970 |
0.5000 |
0.509994838030 |
132.662297351 |
0.509945623841 |
79 |
4.450 |
8.31915338165 |
0.5000 |
0.509995903327 |
132.651528457 |
0.509946678723 |
80 |
4.500 |
8.45040053722 |
0.5000 |
0.509996949500 |
132.640955106 |
0.509947714668 |
81 |
4.550 |
8.58225839018 |
0.5000 |
0.509997977143 |
132.630571175 |
0.509948732262 |
82 |
4.600 |
8.71472293692 |
0.5000 |
0.509998986825 |
132.620370811 |
0.509949732069 |
83 |
4.650 |
8.84779024432 |
0.5000 |
0.509999979088 |
132.610348414 |
0.509950714628 |
84 |
4.700 |
8.98145644779 |
0.5000 |
0.509902887276 |
133.600498622 |
0.509854567943 |
85 |
4.750 |
9.11571774931 |
0.5000 |
0.509903827618 |
133.590816299 |
0.509855499174 |
86 |
4.800 |
9.25057041558 |
0.5000 |
0.509904752345 |
133.581296525 |
0.509856414942 |
87 |
4.850 |
9.38601077623 |
0.5000 |
0.509905661910 |
133.571934580 |
0.509857315692 |
88 |
4.900 |
9.52203522214 |
0.5000 |
0.509906556742 |
133.562725938 |
0.509858201853 |
89 |
4.950 |
9.65864020375 |
0.5000 |
0.509907437257 |
133.553666253 |
0.509859073834 |
90 |
5.000 |
9.79582222949 |
0.5000 |
0.509908303852 |
133.544751352 |
0.509859932029 |
91 |
5.050 |
9.93357786422 |
0.5000 |
0.509909156910 |
133.535977228 |
0.509860776818 |
92 |
5.100 |
10.0719037278 |
0.5000 |
0.509909996798 |
133.527340028 |
0.509861608564 |
93 |
5.150 |
10.2107964937 |
0.5000 |
0.509910823871 |
133.518836045 |
0.509862427618 |
94 |
5.200 |
10.3502528874 |
0.5000 |
0.509911638468 |
133.510461718 |
0.509863234317 |
95 |
5.250 |
10.4902696854 |
0.5000 |
0.509912440917 |
133.502213614 |
0.509864028985 |
96 |
5.300 |
10.6308437137 |
0.5000 |
0.509913231534 |
133.494088430 |
0.509864811935 |
97 |
5.350 |
10.7719718467 |
0.5000 |
0.509914010622 |
133.486082986 |
0.509865583467 |
98 |
5.400 |
10.9136510060 |
0.5000 |
0.509914778475 |
133.478194216 |
0.509866343873 |
99 |
5.450 |
11.0558781590 |
0.5000 |
0.509915535375 |
133.470419162 |
0.509867093431 |
100 |
5.500 |
11.1986503181 |
0.5000 |
0.509916281594 |
133.462754976 |
0.509867832413 |
Table 2) of sequential 1/20 iterates of f(x) = x² + 1/4, beginning at x0=1
We begin at x0=1 and perform 31 iterations of height=1/10 . These are the 31 xm-coordinates in the second column. In the third column each of that values was again iterated by 1/20, so we have actually 60 1/20-iterates beginning at x0=1.0 .
The other columns are the same as in the above table.
m |
xm |
xm+0.05 |
h |
xm-j <=0.51 |
fAbel(xm-j-0.5) |
xm-j+0.5 |
0 |
1 |
1.00892744 |
1/20 |
0.50997261 |
132.887564 |
0.50987992 |
0.1 |
1.01813539 |
1.02763611 |
1/20 |
0.50998246 |
132.787564 |
0.50988959 |
0.2 |
1.03744256 |
1.04756841 |
1/20 |
0.50999234 |
132.687564 |
0.50989929 |
0.3 |
1.05802812 |
1.06883696 |
1/20 |
0.50990414 |
133.587564 |
0.50981271 |
0.4 |
1.0800111 |
1.09156765 |
1/20 |
0.50991387 |
133.487564 |
0.50982226 |
0.5 |
1.10352474 |
1.11590156 |
1/20 |
0.50992361 |
133.387564 |
0.50983182 |
0.6 |
1.12871848 |
1.14199714 |
1/20 |
0.50993337 |
133.287564 |
0.5098414 |
0.7 |
1.15576047 |
1.17003288 |
1/20 |
0.50994315 |
133.187564 |
0.509851 |
0.8 |
1.18484031 |
1.20021036 |
1/20 |
0.50995295 |
133.087564 |
0.50986062 |
0.9 |
1.21617242 |
1.23275783 |
1/20 |
0.50996277 |
132.987564 |
0.50987026 |
1 |
1.25 |
1.26793458 |
1/20 |
0.50997261 |
132.887564 |
0.50987992 |
1.1 |
1.28659966 |
1.30603597 |
1/20 |
0.50998246 |
132.787564 |
0.50988959 |
1.2 |
1.32628706 |
1.34739957 |
1/20 |
0.50999234 |
132.687564 |
0.50989929 |
1.3 |
1.3694235 |
1.39241245 |
1/20 |
0.50990414 |
133.587564 |
0.50981271 |
1.4 |
1.41642398 |
1.44151994 |
1/20 |
0.50991387 |
133.487564 |
0.50982226 |
1.5 |
1.46776684 |
1.49523628 |
1/20 |
0.50992361 |
133.387564 |
0.50983182 |
1.6 |
1.52400542 |
1.55415746 |
1/20 |
0.50993337 |
133.287564 |
0.5098414 |
1.7 |
1.58578227 |
1.61897695 |
1/20 |
0.50994315 |
133.187564 |
0.509851 |
1.8 |
1.65384656 |
1.69050491 |
1/20 |
0.50995295 |
133.087564 |
0.50986062 |
1.9 |
1.72907537 |
1.76969188 |
1/20 |
0.50996277 |
132.987564 |
0.50987026 |
2 |
1.8125 |
1.8576581 |
1/20 |
0.50997261 |
132.887564 |
0.50987992 |
2.1 |
1.9053387 |
1.95572995 |
1/20 |
0.50998246 |
132.787564 |
0.50988959 |
2.2 |
2.00903736 |
2.0654856 |
1/20 |
0.50999234 |
132.687564 |
0.50989929 |
2.3 |
2.12532071 |
2.18881243 |
1/20 |
0.50990414 |
133.587564 |
0.50981271 |
2.4 |
2.2562569 |
2.32797974 |
1/20 |
0.50991387 |
133.487564 |
0.50982226 |
2.5 |
2.4043395 |
2.48573154 |
1/20 |
0.50992361 |
133.387564 |
0.50983182 |
2.6 |
2.57259251 |
2.66540542 |
1/20 |
0.50993337 |
133.287564 |
0.5098414 |
2.7 |
2.76470541 |
2.87108636 |
1/20 |
0.50994315 |
133.187564 |
0.509851 |
2.8 |
2.98520845 |
3.10780684 |
1/20 |
0.50995295 |
133.087564 |
0.50986062 |
2.9 |
3.23970162 |
3.38180935 |
1/20 |
0.50996277 |
132.987564 |
0.50987026 |
3 |
3.53515625 |
3.70089362 |
1/20 |
0.50997261 |
132.887564 |
0.50987992 |
Gottfried Helms, 2012-10-10