Exponential diophantine problems:
The power of cyclic subgroups

Abstract:
A notational (and conceptional) framework for discussion of exponential diophantine
problems in terms of order of cyclic subgroups modulo a prime is presented. Some ex-
amples are given. We just express some know problems differently and in a coherent
framework, we do not primarily attempt to arrive at new results.

Relevant aspects are:
• modular arithmetic
• Euler's phi() or "totient"-function
• exponential equations
• the "little theorem of Fermat"
• the prime-factorization of an expression

Gottfried Helms
Version : 13.4.2018 prev:19.10.17; ...
initial: 2006

Contents:
1 Introduction and basic definitions/notations...2
 1.1 Intro..2
 1.2 Notation for "divides" ...4
 1.3 Notation for "valuation" (finding the exponent of a primefactor)5
1 Fermat/Euler and two residue-orientated functions ...7
 2.1 Fermat's little theorem and Euler's generalization..7
 2.2 A little bit beyond the Fermat/Euler-theorem...8
 2.3 Notation for cycle-length (Lambda-or \(\lambda() \) function) ...10
 2.4 Notation for "exponent at first occurrence" (\(\alpha() \) (="alpha")/\(\beta() \)-function)...............12
 2.5 Increasing powers of \(p \) when increasing the exponent \(n \)..14
2 Applications..16
 3.1 Simple examples of primefactor-decomposition..16
 3.2 The canonical primefactor-decomposition of \(f_{b,1}(n) \) and \(g_{b,1}(n) \)..........................16
 3.3 If \(b^m - a^n = d \), are there more solutions \(b^{m+x} - a^{n+y} = d \)?18
 3.3.1 Solutions of \(3^3 \cdot 2^{m}=1 \) or \(2^6 \cdot 3^{m}=1 \)? (solved in the 13th century)..............18
 3.3.2 Example: \(2^5 \cdot 3^3 = 5 \). Are there more solutions \(2^{5+x} \cdot 3^{3+y} = 57 \)?......................19
 3.4 Common factors of Fermat-numbers \(2^n2^h+1 \) and powertowers \(2^a2^b2^c...+1 \)?..............21
 3.5 The "chinese"-primality test...23
 3.6 The Zsigmondy-theorem...24
 3.7 Mersenne-numbers..25
 3.8 Iterated Mersenne-type numbers (iterated \(b^n-1 \) where \(n \) is any positive integer)27
 3.9 Cyclotomic expressions/repunits/q-analogues...30
 3.10 Primefactors in the Lucas-sequence..31
 3.11 A view into FLT...33

Note: this is still a manuscript partly in a draft state only for the support of a discussion
1 Introduction and basic definitions/notations

1.1 Intro

The considerations in the current article were initially triggered by the study of the functions
\[f_{b,a}(n) = b^n - a^n \]
\[g_{b,a}(n) = b^n + a^n \]
modulo some prime \(p \), and subsequently more generally by their complete prime-factorizations. For instance in terms of the question:

given a pair of "bases" \(a, b \) find the relation of \(p \) and \(n \) such that

\[b^p - a^n \equiv 0 \pmod{p} \] //for some prime \(p \)

or more explicitely

given a pair of "bases" \(a, b \) find an expression for \(e_k \) depending on \(n \) in

\[b^n - a^n = \prod_{p_k \text{ a prime}} p_k^{e_k} \]

Looking at modularity with respect to some primes or to the complete primefactorization where \(n \) is a variable parameter, we may call these an exponential diophantine problem.

Similar other questions in that area of exponential diophantine problems are sometimes advantageousely formulated in terms of the order of the multiplicative cyclic subgroup modulo a prime \(p \)\(^1\). In 2006 I got up with the idea to develop a common notational framework for a unified formulation of such problems: if some problem could be answered looking at it modulo the prime \(p_1 \) and another problem modulo \(p_2 \) and \(p_3 \), then why not use a formalism which principally refers to all primes and can then be focused appropriately according to a current problem?

The following treatize is only concerned with the presentation of such a formalism making it a little algebra and just a couple of rather immediate implications. I don't attempt to find some special new solutions. Rather I'm looking at some old classic problems with that "new glasses" developed here – and I find some very nice appeal in that unified view.

In general in the following I'll look at the function \(f_{b,1}(n) \) rather than at the more general one \(f_{b,a}(n) \) and leave that generalization to further progress. One of the specific differences is: in \(f_{b,1}(n) \) the primefactor 2 plays a special role (because \(f_{b,1}(n) \) and \(g_{b,1}(n) \) with \(\gcd(b,2) = 1 \) are both divisible by 2); a related effect must be taken into account for \(f_{b,a}(n) \) but I've not yet looked at this more than cursory.

Two ad hoc introduced notations are useful for problems of wider area too: the idea of the Iverson-brackets\(^2\), which means to introduce some boolean if-condition as numerical parameter into an algebraic formula. I focus here on the "if \(m \) divides \(n \)" – condition and "highest power of \(m \) which divides \(n \)"-value giving them symbols which allow algebraic manipulations in equations and formulae.

\(^1\) see http://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n

In the following I use also abbreviations for $f()$ and $g()$ because in most places I assume some constant parameters a, b so –where possible – I denote this as follows:

In general:

$$f_{b,a}(n) = b^n - a^n$$

and $g_{b,a}(n) = b^n + a^n$

If the parameter $a=1$ then I abbreviate

$$f_{b}(n) = b^n - 1$$

and $g_{b}(n) = b^n + 1$

and if also $b=2$ then I omit that parameter too:

$$f(n) \quad \text{means} \quad f_{2,1}(n) \quad \text{so} \quad f(n) = 2^n - 1$$

$$g(n) \quad \text{means} \quad g_{2,1}(n) \quad \text{so} \quad g(n) = 2^n + 1$$

Where in the context of some paragraph the bases b and a are given and constant I may use the short forms $f(n)$ and $g(n)$ as well.

By default I denote integers using the letters n or m or x, primes using p, q, r, u. The letters b and a are mostly used for the pair of possible bases usually having $\gcd(a,b)=1$, and are meant as constant parameters in a certain formula, while n, p etc are meant as variable. The symbol e is never meant as Euler's constant but refers to a variable in the exponent of a primefactor in the canonical primefactorization of some number or expression as well as the symbol w which alludes to the exponent of a Wieferich (or generalized wieferich) prime in the canonical primefactorization.

Euler’s totient function is denoted by $\varphi(n)$; I also introduce the greek letters α ("alpha"), β ("beta") and λ ("lambda") for three essential functions (see 2.1 and 2.2)
1.2 Notation for "divides"

In the following the usual notation \(m | n \) for "\(m \) divides \(n \)" seems to be not well suited for use in the formulae under algebraic manipulations. The main problem is to use the evaluation of that "\(m \) divides \(n \)"-condition as part of a concise algebraic formula. To put conditions into algebraic formulae was in principle introduced by K. E. Iverson in the programming language APL and was more popularized by D. Knuth using brackets around a boolean expression("Iverson brackets"). This was in the same way meant to convert the boolean "false" "true" into arithmtical 0 and 1 as I want to have it here, usable for instance as multiplicative factor.

So I introduce such a notation which also resembles the more "natural" use for the "divides" here and which can be included in an algebraic formula, however still limited.

\[
\text{\textbf{(1.2.1)}} \quad [n : m] = 1 \text{ if } m \text{ divides } n, \quad [n : m] = 0 \text{ if } m \text{ does not divide } n
\]

In long formulae I prefer also a second notation which reminds visually stronger to the aspect of division; I use a modification of the notation of a fraction:

\[
\text{\textbf{(1.2.2)}} \quad \frac{n}{m}
\]

We can do a bit of algebra with that operation:

\[
1 - \sim \quad \text{negation} \\
\sim \sim \quad \text{boolean AND} \\
\sim \sim \sim \quad \text{boolean OR}
\]

but note, that usual operations as addition and multiplication of such "divides"-expressions in the manner of adapting sums or products of fractions do not make sense in general. However, at least we can use the arithmetical cancellation/expansion of numerator and denominator:

\[
\text{\textbf{(1.2.4)}} \quad \frac{p}{r} = \frac{p \cdot q}{r \cdot q} \quad \text{cancellation}
\]

This is not fully compatible with \(\gcd(n,m) \). Assume three different primes \(p, q, r \):

\[
\text{then} \quad [n : m] = 0 \quad \text{but} \quad \gcd(n,m) = q
\]

Remark: later I'll generalize that Iverson-bracket to contain also logical expressions like \([b > a]\); this shall occur in sections to be written in the next version.

\(^3 \) For me that symbol is also unnatural, since I'm used to the divisor on the right side of the division-symbol, or even better, as denominator in a fraction, and I'd like to have this here too.
1.3 Notation for "valuation" (finding the exponent of a prime factor)

Consider the canonical prime factorization of a natural number \(n \):

\[
n = p_1^{e_1} \cdot p_2^{e_2} \cdot p_3^{e_3} \cdot \ldots \cdot p_m^{e_m}
\]

Then the term "valuation"\(^4\) means the exponent \(e_k \) of \(p_k \), such that

\[
e_k = \text{valuation}(n, p_k)
\]

often written as \(e_k = \nu_{p_k}(n) \)

For shortness of notation I misuse the (curly) braces for that notation:

\[
\{n, p\} = e
\]

\[
n = x \cdot p^e \quad \text{where} \quad \frac{x}{p} \sim 0
\]

or

\[
\{x \cdot p^e, p\} = e \quad \text{when} \quad \frac{x}{p} \sim 0
\]

This can also be expressed differently as:

\[
\{n, p\} = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \left[\frac{n}{p^3}\right] + \ldots = \sum_{k=1}^{\infty} \frac{n}{p^k}
\]

Example 1:

The obvious and natural application of that "valuation-braces" is in the canonical prime factorization of a natural number \(n \):

\[
n = \prod_{p \in \text{primes}} p^{\{n, p\}}
\]

Example 2:

The Fermat-/Euler-theorem, expressed in this notation looks for a base \(b \), a prime \(p \) and \(\gcd(b, p) = 1 \) resp. \(\gcd(b, n) = 1 \) (where \(n \) is a positive integer)

(Fermat:)

\[
\{b^{p-1}, p\} \geq 1
\]

(Euler:)

\[
\{b^\phi(n) - 1, n\} \geq 1
\]

(Euler:)

\[
\{b^\phi(p^k - 1), p\} = \{b^\phi(p)^{k-1}, p\} \geq k
\]

(Remark: one of the goals in this article is to define a function to have an exact \(\equiv k \) sign instead of the \(\geq k \) in the Euler-theorem to allow reducible algebraical expressions)

Example 3:

A more sophisticated form, reflecting the required divisibility of an exponent \(n \) by \(\phi(p) \) and possible higher powers of \(p \) for some examples:

\[
\{b^{n-1}, p\} = 0 \quad \text{if} \quad [n : \phi(p)] = 0
\]

\[
\geq 1 + \{n, p\} \quad \text{if} \quad [n : \phi(p)] = 1
\]

\(^4\) as –for instance - in the programming language for Pari/GP
If we express the if as algebraic expression using the arithmetical conversion of the "divides"-condition (the analogon to the Iverson-bracket) we can write for the power to which some prime \(p \) occurs in \(f_p(n) \):

\[
\{b^n-1, p\} = \frac{n}{\varphi(p)} \cdot (\alpha + \{n, p\}) \quad \text{where } \alpha \geq 1 \text{ and is explained below}
\]

Example for some prime \(p \):

use \(p=5 \), then \(\varphi(5)=4 \)

\[
\{2^n-1, 5\} = \frac{n}{\varphi(5)} \cdot (1 + \{n, 5\}) = \frac{n}{4} (1 + \{n, 5\})
\]

which means:

if \(n \) is not divisible by \(\varphi(5)=4 \), then the valuation of \(p = 5 \) in this expression is zero because \(0 \cdot \ldots \) is always zero

if \(n \) is divisible by \(\varphi(5)=4 \) the valuation of \(p \) in that expression is \(1 \cdot (1 + \{n, 5\}) \), which is at least 1 and if powers of 5 are also factors of \(n \), then the exponent adds to that value.

Examples for some \(n \) and the same primefactor \(p=5 \):

\[
\begin{align*}
\{2^7-1, 5\} &= \frac{7}{4} (1 + \{7, 5\}) = 0 \cdot (\ldots) = 0 \\
\{2^4-1, 5\} &= \frac{4}{4} (1 + \{4, 5\}) = 1 \cdot (1 + 0) = 1 \\
\{2^{12}-1, 5\} &= \frac{12}{4} (1 + \{12, 5\}) = 1 \cdot (1 + 0) = 1 \\
\{2^{20}-1, 5\} &= \frac{20}{4} (1 + \{20, 5\}) = 1 \cdot (1 + 1) = 2 \\
\{2^{600}-1, 5\} &= \frac{600}{4} (1 + \{600, 5\}) = 1 \cdot (1 + 3) = 4
\end{align*}
\]
2 Fermat/Euler and two residue-orientated functions

2.1 Fermat's little theorem and Euler's generalization

For the study of exponential diophantine problems Fermat's little theorem and Euler's generalization are the most elementary facts.

They imply cyclicitness of divisibility of $f_{b,a}(n)$ and $g_{b,a}(n)$ by some prime p with respect to consecutive n and they allow to reduce a problem, for instance divisibility by some number, to a much smaller finite set of conditions. If we consider $f(n) = f_{2,1}(n)$ for some n and its divisibility by some prime, say $p=3, 5$ or 7:

<table>
<thead>
<tr>
<th>n:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(n)$</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>15</td>
<td>31</td>
<td>63</td>
<td>127</td>
<td>255</td>
<td>511</td>
<td>1023</td>
<td>...</td>
</tr>
</tbody>
</table>

$[f(n): 3] = 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...$

$[f(n): 5] = 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, ...$

$[f(n): 7] = 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, ...$

... then we observe periodicity with n in that divisibilities and looking at the values of the modular residues (not shown here) we may talk of "cyclicity".

The little theorem of Fermat is originally

\[
\text{if } p \text{ is a prime and } \gcd(b, p) = 1 \text{ then } \\
\quad b^p \equiv b \pmod{p}
\]

and can be translated to some other form:

\[
\text{if } p \text{ is a prime and } \gcd(b, p) = 1 \text{ then } \\
\quad b^{p-1} \equiv 1 \pmod{p} \\
b^{p-1} - 1 \equiv 0 \pmod{p} \\
b^{p-1} - 1 = x \cdot p \\
[b^{p-1} - 1 : p] = 1 \\
\{b^{p-1} - 1, p \} \geq 1
\]

and the generalization to

cyclicitness: If p is a prime then from $b^{p-1} \equiv 1 \pmod{p}$ we have also

\[
b^{k \cdot (p-1)} \equiv (b^{p-1})^k \equiv 1^k \equiv 1 \pmod{p}
\]

and with $n = m + k \cdot (p-1)$ we have for every integer $k > 0$

\[
b^n \equiv b^{m+k \cdot (p-1)} \equiv b^m b^{k \cdot (p-1)} \equiv b^m \cdot b^{k \cdot (p-1)} \equiv (b^m \cdot b^{k \cdot (p-1)}) \equiv b^m \cdot (b^{k \cdot (p-1)}) \equiv b^n \pmod{p}
\]

So the cycles with respect to varying n are modulo $(p-1)$ and the most interesting case is here when $m=0$ so

\[
b^{k \cdot (p-1)} \equiv 1 \pmod{p} \\
b^{k \cdot (p-1)} - 1 \equiv 0 \pmod{p} \\
[b^{k \cdot (p-1)} - 1 : p] = 1
\]

If we denote the exponent with n and let it vary, then this means: "whenever n is divisible by $(p-1)$, the expression is divisible by p" and we can express this using the new notation for divisibility

\[
[b^n - 1 : p] = \frac{n}{p} = \frac{n}{p^{n-1}}
\]
L. Euler generalized this with his totient-function \((\varphi(m))\) to composite moduli \(m\)

\[(2.1.3) \quad b^{\varphi(m)} - 1 \equiv 0 \pmod{m} \quad \text{// gcd}(b,m)=1\]

Because \(\varphi(m) = m - 1\) if \(m\) is prime, this is indeed a generalization of the Fermat-theorem. With the same argument as above we can also write

\[(2.1.4) \quad b^{\varphi(m)k} - 1 \equiv 0 \pmod{m} \quad \text{or} \quad \left[\frac{b^{\varphi(m)} - 1}{m}\right] = 1\]

or focusing a varying \(n\) in the exponent:

\[
\left[\frac{b^n - 1}{m}\right] = \frac{n}{\varphi(m)}
\]

However, in the following we do not need that extension to composite moduli since we’re going to consider only the explicit prime-factorizations of our expression and thus we need the moduli of primes only. Only we’ll refer to the \(\varphi\)-function for more generality and/or completeness.

2.2 A little bit beyond the Fermat/Euler-theorem

The Fermat/Euler-theorem is very powerful, but in one sense it is too imprecise for our goal here where we want to establish a notation in equation-form and exact parameters for algebraic manipulation, not in qualitative conditions ("is cyclic", "divides") only. We'll need (at least) three improvements for that theorems.

a) The cycle length. The value \(\varphi(p)\) as expression of the cycle-length of \(f_{b,a}(n) (\pmod{p})\) with respect to consecutive \(n\) is only an upper-bound for that cycle-length. Usually the cycle-length is much smaller (while it is always a divisor of \(\varphi(p)\)). Thus below we'll introduce a (cycle-) length-function \(\lambda(\) \ "\text{lambda}\"\). The value of this function is always a divisor of \(\varphi(p)\) (including \(1\) or \(\varphi(p)\)) and is depending on the pair of bases in \(f_{b,a}(n)\). We'll write it with \(p\) as index and (optional) \((b,a)\) as parameters. So we will have

\[
\left[\frac{b^{k\lambda_p(b,a)} - 1}{p}\right] = 1 \quad \text{stating simply divisibility using Iverson-brackets}
\]

or

\[
\left[\frac{b^n - 1}{p}\right] = \frac{n}{\lambda_v(b,a)} \quad \text{relating it to another algebraic expression}
\]

which is the same but introduces "little Fermat" in the rhs.

b) The Fermat/Euler-theorem states \(f_p(\varphi(p)) \equiv 0 \pmod{p}\), but this is only a lower bound for the modulus \(p\). Sometimes we have \(f_p(\varphi(p)) \equiv 0 \pmod{p^k}\) where \(k>1\) (a problem studied more deeply under the notion of "fermat-quotient", see chap 4).

Thus below we'll introduce a first-exponent-function \(\alpha(\) \ "\text{alpha}\"\) to be able to refer to the exact value. (Again, we’ll write it with \(p\) as index and (optional) \((b,a)\) as parameters) So we will have
\[
\{b^{\lambda_p(b,1)} - 1, p\} = \alpha_p(b,1)
\]

or

\[
\left[b^n - 1 : p^{\alpha_p(b,1)} \right] \sim \lambda_p(b,1)
\]

For the correct handling of the prime factor 2, which occurs if \(b \) is odd, we must also look at the exponent to which it occurs in \(g_b(\varphi(2)) \) and call this \(\beta_2(b) \) ("beta") :

\[
\{b^{\beta_2(b)} + 1, 2\} = \beta_2(b,1)
\]

Note that also \(\lambda_2 = 1 \) for all odd \(b \), and moreover \(\alpha_2 + \beta_2 > 2 \)

c) The Euler-theorem states, if applied to powers of primes,

\[
\begin{align*}
&f_b(\varphi(p)) \equiv 0 \pmod{p} \\
&f_b(\varphi(p)p^k) \equiv 0 \pmod{p^{k+1}}
\end{align*}
\]

But similar to b) without further specification that increment of 1 in the exponent of the modulus \(p \) is only a lower bound for the increment of \(k \). We want a reference to an exact value, especially we want to be able to do arithmetic in \(k \) on both sides of our equations. So we have to prove that increments of exponents for prime factors \(p \) in the lhs are correctly reflected on the rhs by the same increment.

So we will have for odd prime factors \(p \):

\[
\begin{align*}
\{b^{\lambda_p(b,1)} - 1, p\} = \alpha_p(b,1) & \quad \text{short notation:} \quad \{b^{\lambda_p(b,1)} - 1, p\} = \alpha_p(b,1) \\
\{b^{\lambda_p(b,1)}p^k - 1, p\} = \alpha_p(b,1) + k & \quad \{b^{\lambda_p(b,1)}p^k - 1, p\} = \alpha_p + k
\end{align*}
\]

and for \(p=2 \) this needs completion using the function \(\beta_2(b,1) \)

In the following sections I introduce the needed functions \(\lambda ("\text{lambda}\") \) and \(\alpha ("\text{alpha}\") \) and \(\beta ("\text{beta}\") \) and a proof that the increment of exponents is indeed parallel.
2.3 Notation for cycle-length (Lambda-or \(\lambda \) function)

If \(\gcd(b, p) = 1 \), then the Fermat-/Euler-theorem describes the cyclicitiness of \(f_b(n) \pmod{p} \) as

\[
 f_b(n) \equiv f_b(n \pmod{\varphi(p)}) \pmod{p}
\]

If \(n = r + k \cdot \varphi(p) \)

\[
 f_b(n) \equiv f_b(r) \pmod{p}
\]

But while this is true, the cycle-length can also be smaller; precisely it can equal a divisor of \(\varphi(p) \). This is also known as "order of the multiplicative subgroup modulo \(p \)."

Example. If \(b=2 \) and \(p=7 \) we ask for \(f_{2,1}(n) \) or \(2^n \equiv 1 \pmod{7} \). Since \(\varphi(7) = 6 \) we have

\[
 f(6) = 2^6 \equiv 0 \pmod{7}
\]

which is obviously true. But already we have

\[
 f(3) = 2^3 \equiv 0 \pmod{7}
\]

and thus the cycle-length is 3 (which is also a divisor of 6).

This is called the "order" of the cyclic multiplicative subgroup; as function we find often the symbol \(\text{ord}(n) \). To have a single symbol I introduce the function \(\lambda \):

- assuming \(\gcd(b, p) = 1 \)
- \(\lambda_p(b, a) \): select the smallest \(m > 0 \) such that \([b^m - a^m] : p = 1 \)
- short forms
- \(\lambda_p(b) = \lambda_p(b, 1) \)
- \(\lambda_p = \lambda_p(2, 1) \)
- \(\lambda_p = \lambda_p(b, a) \) if a certain \((b, a) \) is understood in a formula
- the complete parenthesis may be omitted

\[
 \lambda_p(b, a) = m \quad \text{if } m > 0
\]

\[
 = <\text{infinity}> \quad \text{if there is no } m \text{ (because } \gcd(b, p) > 1\text{)}
\]

I also use the notation \(\lambda_p \) or even only \(\lambda \) in a context, where the base \(b \) (or the pair \(b \) and \(a \)) is a constant parameter and the readability of the formula shall be improved.

Unfortunately the \(\lambda \)-definition interferes with the well known Carmichael-function of the same name, but I used it here because of its clarity (and also for personal historical reasons)

(Carmichael-function): The value of the smallest \(m \), where, for all \(a \) with \(\gcd(b, n) = 1 \)

\[
 b^m - 1 \equiv 0 \pmod{n}
\]

is known as the **Carmichael \(\lambda \) function** for the number \(n \). In the example, \(\lambda_{\text{carmichael}} (7) \) is not 3, but 6 because there is another base, \(a=3 \), where the smallest \(m \) satisfying the divisibility is 6:

\[
 3^6 - 1 \equiv 0 \pmod{7}
\]

so

Carmichael-Lambda:

\[
 \lambda_{\text{carmichael}} (7) = 6
\]

For the current discussion this function is too complex; we want to discuss properties of one single base \(b \) (or a pair of bases in \(f_{b,a}(n) \)) so I introduce my own variant which denotes the smallest index \(m \) for a specific base \(b \) which is under discussion.
A brief aside: Primitive root

K.F. Gauss introduced the concept of a "primitive root" for a prime p. In the notion that we use here we fix a prime p, vary the base b in $f_b(n)$ and check the length-function for p resp that base b. If $\lambda_p(b,1) = p-1$, then we say, that "b is a primitive root" of p.

In another view we can characterize a primitive root b of p as "b is a p-1'th root of 1 (mod p)" (and not a smaller one). A table of r'th roots of 1 (mod p), for instance $p=13$:

<table>
<thead>
<tr>
<th>b^0</th>
<th>b</th>
<th>b^2</th>
<th>b^3</th>
<th>b^4</th>
<th>b^5</th>
<th>b^6</th>
<th>b^7</th>
<th>b^8</th>
<th>b^9</th>
<th>b^{10}</th>
<th>b^{11}</th>
<th>b^{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>5</td>
<td>10</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>12</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>12</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>10</td>
<td>5</td>
<td>9</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>9</td>
<td>12</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>12</td>
<td>2</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

We find a simple scheme here:

<table>
<thead>
<tr>
<th>All roots</th>
<th>"new roots"</th>
</tr>
</thead>
<tbody>
<tr>
<td>1'st root</td>
<td>(1)</td>
</tr>
<tr>
<td>2'nd root</td>
<td>(1,12)</td>
</tr>
<tr>
<td>3'rd root</td>
<td>(1,3,9)</td>
</tr>
<tr>
<td>4'th root</td>
<td>(1,12,5,8)</td>
</tr>
<tr>
<td>6'th root</td>
<td>(1,12,3,9,4,10)</td>
</tr>
<tr>
<td>12'th root</td>
<td>(1,12,3,9,5,8,4,10,2,6,7,11)</td>
</tr>
</tbody>
</table>

Here the bases $b=\{2,6,7,11\}$ are called "primitive roots": their consecutive powers "generate" the whole set of possible residues (mod p).
2.4 Notation for "exponent at first occurrence" (α(\(\alpha \)) (=”alpha”)/\(\beta \)-function)

Another notation is that of the "alpha"-function \(\alpha \). From a short inspection of the \(\lambda \)-function it may appear, that the exponent of the prime at its first occurrence:

\[
f_{2,1}(3) = 2^3 - 1 \equiv 0 \pmod{7}
\]

or

\[
2^3 - 1 = x \cdot 7^1 \quad \text{(and } gcd(x,7) = 1)\]

or written in the new notation

\[\{ f(3), 7 \} = \{ 2^3 - 1, 7 \} = \{ 2^{\lambda_{2,1}(3,1)} - 1, 7 \} = 1\]

is always 1 as in the given example the exponent of the prime \(p=7 \), as might have been found with a couple of further examples. But this is not always the case; for instance in

\[
f_{3,1}(5) = 3^5 - 1 = 3^{\lambda_{3,1}(5)} - 1 = 2 \cdot 11^2
\]

we find

\[
\{ f_{3,1}(\lambda_{3,1}(5)), 11 \} = \{ 3^{\lambda_{2,1}(3,1)} - 1, 11 \} = 2
\]

and that the primefactor \(p=11 \) occurs already to the second power at its first occurence.

A well known and important example is that of the so called "Wieferich-prime" \(w_1 = 1093 \) and \(w_2 = 3511 \) where we have

\[
\{ 2^{1092} - 1, 1093 \} = \{ 2^{364} - 1, 1093 \} = 2
\]

To be able to refer to this property in an algebraic formula we introduce the \(\alpha(\alpha) \)-function, which just expresses that exponent:

\[\alpha_p(b,a) = \{ f_{b,a}(\lambda_p(b,a)), p \} = \{ b^{\lambda_p(b,a)} - a^{\lambda_p(b,a)}, p \} \]

\[\alpha_p(b,a) := 0 \quad \text{if } gcd(b,p) > 1 \text{ or } \lambda_p(b,a) = \text{<infinity>}\]

The \(\alpha \)-function for primes \(p \) can alternatively be expressed using \(\varphi(p) \) instead of \(\lambda_p \), or differently said:

\[
\{ f(\varphi_p), p \} = \{ f(\lambda_p), p \}
\]

because an increase of the valuation of \(p \) in \(f(\lambda_p) \) can only occur on \(p^\text{th} \) multiples of \(\lambda_p \), but since \(\varphi_p < p \) cannot be such a multiple of \(\lambda_p \) it contains \(p \) to the same power.

As with the \(\lambda \)-function I’ll omit the parameters for the base if obvious from context and if it saves notation. So for a given base \(b \), for a prime \(p \) you’ll find the reduced notation

\[\alpha_p = \{ f_{b,0}(\lambda_p), p \} = \{ b^{\lambda_p} - a^{\lambda_p}, p \} \]

For the handling of the primefactor \(p=2 \) when the difference of the bases \(b-a \) is even which occurs also in our standard cases when \(a=1 \) and \(b \) is odd we need also the value of \(g_{b,0}(\lambda_p) \) introducing the function \(\beta(\beta) \)

\[\beta_p = \{ g_{b,0}(\lambda_p), p \} = \{ b^{\lambda_p} + a^{\lambda_p}, p \} \]

Because \(\lambda_p(b,a) \) is always 1 in that cases (in the other cases the primefactor 2 does not occur at all) this looks like

\[\alpha_p = \{ f_{b,0}(1), 2 \} = \{ b - a, 2 \}
\]

\[\beta_p = \{ g_{b,0}(1), 2 \} = \{ b + a, 2 \}
\]

and we have also
either $\alpha_2 = 1$ and $\beta_2 > 1$

or $\alpha_2 > 1$ and $\beta_2 = 1$

and thus

$$\alpha_2 + \beta_2 > 2$$

A brief aside: Wieferich-primes:

Note, that the term "Wieferich-primes" refers to the function a_p in a special case. The definition for a Wieferich prime is, translated to the current terminology,

(i) a prime p is called "Wieferich-prime" if

$$\{2^{p-1} - 1, p\} > 1$$

For the current purposes it is useful to extend this:

(ii) a prime p is called "generalized Wieferich-prime of order k" if

$$\{ b^1 - a^1, p \} = 0$$

and

$$\{ b^{p-1} - a^{p-1}, p \} = k > 1$$

Again we can replace the exponent $p-1$ or ϕ_p by λ_p and write

(iii) a prime p is called "generalized Wieferich-prime of order k"

if

$$\{ f_{a,a}(1), p \} = \{ b^1 - a^1, p \} = 0$$

and

$$\{ f_{a,a}(\lambda_p), p \} = \{ b^{\lambda} - a^{\lambda}, p \} = a_p \text{ and } a_p > 1$$

or shorter: a prime p is called a "generalized Wieferich prime of order k"

if $\lambda_p > 1$ and $a_p = k > 1$

(an observation:

If $\lambda_p = q$ is prime, then from $\{ f(q)/f(1), p \} > 0$ follows, that $p = 1 + k \cdot q$ and $f(q)$ has the form

$$f(q) = (1 + 2kq + k^2q^2)/(1 + k \cdot q)^k \cdot x$$

(to be continued))
2.5 Increasing powers of \(p \) when increasing the exponent \(n \)

The Fermat/Euler-theorem is quite basic and quite helpful for the number-theoretic analysis. However, for algebraic manipulations that theorem has the drawback, that it gives only a lower bound for the power of a prime factor in an expression \(b^n - 1 \).

I'll show the problem here: the \(\varphi \)-formula for prime \(p \) can be extended this way:

\[
\begin{align*}
b^{\varphi(p)} - 1 &\equiv 0 \pmod{p} \\
b^{\varphi(p)k} - 1 &\equiv 0 \pmod{p^k} \\
b^{\varphi(p)k^{k-1}} - 1 &\equiv 0 \pmod{p^{k-1}} \quad \text{or} \quad \equiv 0 \pmod{p p^{k-1}}
\end{align*}
\]

As we've seen in the paragraph on the "alpha"-function this is only a lower bound for the \(k \) on the rhs and is solved by simply introducing the alpha-function as notational reference to this property. So for some parameters

\[
b^{\varphi(p)} - 1 \quad \equiv 0 \pmod{p^{\alpha p}}
\]

with \(\alpha_p > 1 \) as discussed above. But moreover, the Fermat/Euler-theorem does not state explicitly, that if in

\[
b^{\varphi(p)k} - 1 \equiv 0 \pmod{p^{\alpha_p+k}}
\]

\(k \) is increased in the lhs in steps by 1, the exponent of \(p \) on the rhs increases simultaneously in steps by 1, and it is not excluded, that possibly there is a \(j > 0 \) occurring where then

\[
b^{\varphi(p)k} - 1 \equiv 0 \pmod{p^{\alpha_p+k+j}}
\]

at some value for \(k \). These two shortcomings are solved here.

First, we modify the Euler-formula for primes \(p \) in the following way:

\[
\{b^{\varphi(p)} - 1, p\} = \alpha_p
\]

because—as stated above— the exponent of \(p \) at its first occurrence may be greater than 1.

Second, it must be shown, that indeed for a certain integer \(k > 0 \) exactly

\[
\begin{align*}
\{b^{\varphi(p)k} - 1, p\} &= \alpha_p + k \\
\{b^{\varphi(p)k} - 1, p^k\} &= x p^{\alpha_p+k} \\
\{b^{\varphi(p)k} - 1, p^{\alpha_p+k} \} &= 1 + x p^{\alpha_p+k} \\
\end{align*}
\]

// or written differently: \(\gcd(x, p) = 1 \)

The general expression for the exponent of a prime factor \(p \) for odd \(p \) is then

\[
\{b^n - 1, p\} = \left[n : \lambda_p \right] \cdot (\alpha_p + \{n, p\}) \\
\text{for odd } p, \gcd(b, p) = 1
\]

This shall be used (for odd prime factors) on the next page.

The prime factor \(p = 2 \) needs again a special handling. We assume \(f_{b,a}(n) \) and \(g_{b,a}(n) \) with \(a = 1 \) and \(b \) odd. (if \(b \) is even, then 2 does not occur at all as primefactor). We have (without given proof)

\[
\begin{align*}
\{b - 1, 2\} &= \alpha_2 \\
\{b^{2k} - 1, 2\} &= \alpha_2 + k + (\beta_2 - 1) \\
\text{for } k > 0 \\
\end{align*}
\]

and more compact

\[
\begin{align*}
\{b^{2k} - 1, 2\} &= \alpha_2 + \{k > 0\} (\beta_2 - 1 + k) \\
\{b^n - 1, 2\} &= \alpha_2 + \{n, 2\} (\beta_2 - 1) \\
\end{align*}
\]

\(\alpha_2 = 1 \) and \(\beta_2 = 3 \)

\(\text{This idea has been promoted in the last couple of years with the name "lemma of lifting-the-exponent" or "LTE-lemma", see for instance <link> }\)
Or, in one formula for all primes p:

$$\{b^n - 1, p\} = [n : \lambda_p] \cdot (\alpha_p + \{n, p\}) + [p=2] \cdot [n:2] \cdot (\beta_2 - 1)$$

The proof (for odd primefactors) uses induction.

Assume, that this condition is true for some k. Then by induction we get for $k+1$

$$B^{\varphi(p) \cdot p^{k+1}} = (b^{\varphi(p) \cdot p^k})^p = \left(1 + x \cdot p^{\alpha_p + k}\right)^p$$

The binomial expansion of the rhs is of course

$$1 + p \cdot x \cdot p^{\alpha_p + k} + \binom{p}{2} \cdot (x \cdot p^{\alpha_p + k})^2 + \binom{p}{3} \cdot (x \cdot p^{\alpha_p + k})^3 + \ldots + p \cdot (x \cdot p^{\alpha_p + k})^{p-1} + (x \cdot p^{\alpha_p + k})^p$$

and we can rewrite and factor out:

$$b^{\varphi(p) \cdot p^{k+1}} - 1 = x \cdot p^{\alpha_p + k+1} \left[1 + \frac{1}{1} \left(x \cdot p^{\alpha_p + k}\right) + \frac{1}{2} \left(x \cdot p^{\alpha_p + k}\right)^2 + \ldots + \frac{1}{p-1} \left(x \cdot p^{\alpha_p + k}\right)^{p-2} + x^{p-1} \left(p^{\alpha_p + k}\right)^{p-2}\right]$$

Here, because p is prime the binomial-coefficients are all divisible by p and the relevant aspect occurs now in the shortened representation

$$b^{\varphi(p) \cdot p^{k+1}} - 1 = x \cdot p^{\alpha_p + k+1} \cdot (1 + p \cdot z)$$

in that the rhs contains the factor p to the power $\alpha_p + k+1$ but not higher.

Since for the induction-start, $k=0$, we can use just the definition α_p such that is

$$\{b^{\varphi(p) \cdot p^0} - 1, p\} = \alpha_p$$ \quad (\geq 1)$$

we finally get from this by induction

$$\{b^{\varphi(p) \cdot p^k} - 1, p\} = \{b^{\varphi(p) \cdot p^{k-1}} - 1, p\} + k$$

as desired.

(End of proof)

Then we have always the exact expression for the exponent of a primefactor p in $f(n,b)$

$$(\text{i}) \quad \{b^x \cdot p^k - 1, p\} = \alpha_p + k$$

$$(\text{ii}) \quad \{b^{\varphi(p) \cdot p^k} - 1, p\} = \alpha_p + k$$ \quad // for gcd$(x,p)=1$

where the reference to the φ-function can also be replaced by the reference to the λ-function

$$(\text{ii}) \quad \{b^{\varphi(p) \cdot p^k} - 1, p\} = \alpha_p + k$$ \quad // for gcd$(x,p)=1$

and the general representation in terms of decomposition of a given n:

$$(\text{i}) \quad \{b^n - 1, p\} = [n : \lambda_p] \cdot (\alpha_p + \{n, p\})$$
3 Applications

3.1 Simple examples of primefactor-decomposition

Example: any natural number n

The canonical primefactor-representation of a natural number n can now be given as

$$ n = \prod_{\text{prime } p} p^{\nu_p(n)} \quad \tag{3.1.1} $$

because the valuation-braces "extract" just the exponent of a so-referred prime in that canonical representation.

Example: denominator of Bernoulli-numbers/von Staudt-Clausen theorem

The denominators of the Bernoulli-numbers in their most cancelled form can be described by:

$$ \text{denominator}(B_n) = 2^{\frac{n}{2}} \prod_{\text{odd } p} p^{\nu_p(n)} \quad \tag{3.1.2} $$

according to the von Staudt/Clausen-theorem very similar to the n-representation (see for instance wikipedia6).

3.2 The canonical primefactor-decomposition of $f_{b,1}(n)$ and $g_{b,1}(n)$

The previous can be used for the description of the canonical primefactor-decomposition of $f_{b,a}(n)$ and $g_{b,a}(n)$, because the same is valid for all primefactors. For the primefactor 2 there is one more extension to be considered, so we exclude it here from the composition-scheme (giving it the formal exponent m, which can be zero) and write for $f_{b,1}(n)$:

$$ b^n - 1 = 2^{2^k} \prod_{a \in \mathcal{A}} \left(a^{\nu_a(n)} \right) \quad \tag{3.2.1} $$

for odd b.

$$ b^n - 1 = \prod_{a \in \mathcal{A}} \left(a^{\nu_a(n)} \right) \quad \text{for even } b $$

(redundant base-parameter b has been omitted and shorter indexed notation for λ and α was used)

For example, for base $b=2$ we have

$$ 2^n - 1 = 3^3 \cdot 5^{2^1} \cdot 7^{2^1} \cdot 11^{2^1} \cdot 1093^{2^1} \cdots \quad \text{for } b=2 $$

where I show the first few primes as factors and also the wieferich-prime $p=1093$, which, if n is divisible by 364 (or 1092), occurs even to the 2^nd power in the value of 2^n-1.

6 https://de.wikipedia.org/wiki/Bernoulli-Zahl
Example: representation of \(g_b(n) \) derived from \(f_b(n) \)

Since

\[b^n + 1 = (b^{2n} - 1)/(b^n - 1) \]

we can describe the composition of \(g_b(n) \) immediately. We leave the powers of 2 indeterminate, give its exponent just the name \(m \), and have:

\[
(3.2.2) \quad b^n + 1 = 2^m \cdot \prod_{p \text{ odd primes}} \frac{2^\alpha (a_\nu + [2n,p])}{p^\alpha (a_\nu + [n,p])}
\]

First we can put numerator and denominator together, since we have the same list of primefactors:

\[
(3.2.3) \quad b^n + 1 = 2^m \cdot \prod_{p \text{ odd primes}} \frac{2^\alpha (a_\nu + [2n,p]) - 2^\alpha (a_\nu + [n,p])}{p^\alpha (a_\nu + [n,p])}
\]

Next; since this is a product of odd primes only, the expression \(\{2n,p\} \) and \(\{n,p\} \) are equal; the valuation of an odd prime \(p \) in \(n \) is the same as in \(2n \), and we can compress the above expression:

\[
(3.2.4) \quad b^n + 1 = 2^m \cdot \prod_{p \text{ odd primes}} \frac{2^n - 2^{n/2} p^{\lambda_p} (a_\nu + [n,p])}{p^{\lambda_p} (a_\nu + [n,p])}
\]

Here the parenthese of the "divides" in the exponent is of special interest. Since if \(n \) is a multiple of \(\lambda_p \) then is also \(2n \), the whole parenthese evaluates to zero, and the primefactor in question cannot occur in \(b^n+1 \).

This can also be seen because in

\[
(b^n + 1) = 2 + (b^n - 1)
\]

\(g_b(n) = 2 + f_b(n) \)

the \(f_b(n) \) and \(g_b(n) \)-functions of the same parameters could only have 2 as common factor.

Now which primes can occur in \(b^n+1 \)? Obviously only that primes, whose cycle-lengths \(\lambda_p \) for the current base do not divide \(n \) but divide \(2\cdot n \), for instance those whose cyclelength is even when \(n \) is odd, and generally, whose cyclelength has one more power of 2 than \(n \) has (besides the other divisibility conditions).

For example, \(g(n)=2^n+1 \) has the composition:

\[
2^n + 1 = 3 \cdot 5^{2/n}(l+3) \cdot 7^{2/n}(l+5) \cdot 11^{2/n}(l+7) \cdot 1093^{2/n}(l+1093) \cdot \ldots
\]

Here we can see that primefactors vanish in case their \(\lambda \)-value is odd, since \([2n : \lambda_p] = [n : \lambda_p] \) if \(\lambda_p \) is odd

and the whole exponent vanishes then.

For the primefactor 3 we observe, that the "divides"-term in the exponent is just

\[1 - [n : 2] \]

that means, it vanishes at even \(n \) and occurs at all odd \(n \).

For the other primefactors we observe, that they occur first when \(n \) is half the cycle-length and then cyclically with their cycle-period, for example \(p=11 \) occurs at \(n=5, 15, 25, \ldots \).
3.3 If $b^m - a^n = d$, are there more solutions $b^{mx} - a^{ny} = d$?

3.3.1 Solutions of $3^n - 2^m = 1$ or $2^n - 3^m = 1$? (solved in the 13th century)

We rearrange the equations to have $f_{b,1}(n)$-expressions:

1) $3^n - 1 = 2^m$
2) $2^n - 1 = 3^m$

We have "trivial solutions" for case 1)

<table>
<thead>
<tr>
<th>n</th>
<th>$3^n - 1 = 2^m$</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3 - 1 = 2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>9 - 1 = 2^3</td>
<td>3</td>
</tr>
</tbody>
</table>

and for case 2)

<table>
<thead>
<tr>
<th>n</th>
<th>$2^n - 1 = 3^m$</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4 - 1 = 3</td>
<td>1</td>
</tr>
</tbody>
</table>

and search for more solutions. We always formulate the primefactor-compositions of the lhs in terms of the primefactors on the rhs.

Case 1: we consider the general relation:

$$\{3^n - 1, 2\} = \alpha_2 + \frac{n}{2}(\beta_2 - 1 + \{n, 2\})$$

$$= 1 + \frac{n}{2}(2 - 1 + \{n, 2\})$$

$$= 1 + \frac{n}{2}(1 + \{n, 2\})$$

Because we have a distinction between even and odd n we separate this in two expressions

a) $\{3^{2n} - 1, 2\} = 1 + \frac{2^n}{2}(1 + \{2n, 2\})$

b) $\{3^{2n+1} - 1, 2\} = 1$

From that descriptions we can reformulate a) and b) to meet our question:

a) $3^{2n} - 1 = 2^{3 + \{n, 2\}}$

$$9^n - 1 = 8 \cdot 2^{\{n, 2\}}$$

$$\frac{9^n - 1}{8} = 2^{\{n, 2\}} (\leq n)$$

Because the rhs $2^{\{n, 2\}} \leq n$ for all n, but the lhs is always greater than n when $n > 1$, the expression shows that the only solution is $n = 1$ or said differently (and with more generality): "we have a contradiction if n becomes greater than some small value" (the "trivial" solutions).

b) $\{3^{2n+1} - 1, 2\} = 1$

Here we see, that the primefactor 2 always occurs only to the first power, so for any $n > 0$ we need additional primefactors to multiply up to the value of $3^{2n+1} - 1$ and thus the formula is correct only for $n = 0$.

a) and b) together give us the two only possible solutions $3^2 - 1 = 2^3$ and $3^1 - 1 = 2^2$.
Now for the case 2)

\[\{2^n - 1, 3\} = \frac{n}{2}(1 + \{n,3\}) \]

\[2^n - 1 = 3^{\frac{n}{2}(1 + \{n,3\})} \]

For odd \(n \) we have the trivial solution \(n=1 \), and \(2^n-1 = 3^0 \).

So we look for even \(n \), so \(n=2m \).

Again we have, that \(3^{\{n,3\}} <= n \) for all \(n \) and only if \(n \) is a perfect power of 3 then we have equality - but then \(n \) is odd and this has been dealt just before. For even \(n \) we have unconditionally of course \(3^{\{2m,3\}} <= m < 2m \). A first solution could be found by

\[2^{2m} - 1 = ? 3 \cdot 3^{\{2m,3\}} < 3 \cdot m \]

setting \(m=1 \) and thus \(n=2 \). But because the lhs grows exponentially and the rhs only linearly when we increase \(m \) resp. \(n \) there cannot be any other solution for equality.

Thus the only possible solution is (the trivial one) \(2^2 - 1 = 3^1 \)

This analysis of the two possible cases shows that besides of the one solution \(3^2 \cdot 2^3 = 1 \) there are only the "trivial" ones \(2^2 \cdot 1 = 3^1, 2^1 \cdot 1 = 3^0 \) and \(3^1 \cdot 1 = 2^1 \)

3.3.2 Example: \(2^5 - 3^3 = 5 \). Are there more solutions \(2^{a+b} - 3^{a+b} = 5 \)?

This is a concrete example for a more general problem. We do the following ansatz

\[2^5 - 3^3 = 5 = 2^{5+a} - 3^{3+b} \]

\[3^{3+b} - 3^3 = 2^{5+a} - 2^5 \]

\[3^b - 1 \cdot 2^a - 1 \]

and look at the conditions which this imposes on the unknown exponents \(b \) and \(a \).

For the lhs, we know that

\[\{3^0 - 1, 2\} = 1 + [n:2](1 + \{n,2\}) \]

and for this expression to equal 5 we must have that

\[1 + [b:2](1 + \{b,2\}) = 5 \quad \text{so } b \text{ must be even} \]

\[\{b,2\} = 3 \]

and \(b \) must -with any odd \(x \)- have the form

\[b = 2^3 \cdot x \]

and we get

\[\{3^{2^x} - 1, 2\} = 5 \]

For the rhs, we know that

\[\{2^0 - 1, 3\} = [n:2](1 + \{n,3\}) \]

and for the rhs in this equation to equal 3 we must have that

\[3 = [a:2](1 + \{a,3\}) \quad \text{so } a \text{ must be even} \]

\[2 = [a,3] \quad \text{so } a \text{ must be divisible by } 3^2 \]

and \(a \) must -with any \(y \) not divisible by \(3^2 \)- have the form
\[a = 2 \cdot 3^2 \cdot y \] and we get
\[\{2 \cdot 3^2 \cdot y - 1, 3\} = 3 \]

Our basic ansatz, using all newly found properties, looks now like:
\[
\frac{3^{2^x} - 1}{3^3} = \frac{2 \cdot 3^{2^y} - 1}{3^3}
\]

The constant parts of the exponents in the numerators in each side make sure, that the numerators have the denominators exactly as factors, and no less or more of the prime-factors in the denominators are allowed to occur, so any involved \(x \) may not contain the primefactor 2, and any involved \(y \) may not contain the primefactor 3.

However, if \(x, y > 0 \) (which we assume for a second solution) each side contains further primefactors, and in the case of existence of a solution for equality that primefactors must be the same and also their exponents must be equal.

The key of the following is to prove, that this is impossible; and the most simple case is, when either in the exponent in the lhs are more primefactors 2 or in that of the rhs are more primefactors 3 - which occurs if either \(x \) has the primefactor 2 as well as if \(y \) the primefactor 3.

We assume first, that \(x = y = 1 \) and look at the primefactors of the lhs. We get
\[
\begin{align*}
\text{lhs} &= 3^{2^1} - 1 = (2^5) \cdot 5 \cdot 41 \\
\text{rhs} &= 2^{3^1} - 1 = (3^3) \cdot 7 \cdot 19 \cdot 73
\end{align*}
\]

(the primefactors in parentheses shall be cancelled by the denominators)

We see, that the lhs and rhs are mutually missing all the primefactors of the other side, so \(x \) as well as \(y \) must be adapted such that both sides have the same primefactors.

To adapt the rhs, getting the primefactors 5 and 41 we consider that we have
\[
\begin{align*}
\{2^n - 1, 5\} &= [n: 4] (1 + \{n, 5\}) \\
\{2^n - 1, 41\} &= [n: 20] (1 + \{n, 41\})
\end{align*}
\]

so \(2 \cdot 3^2 \cdot y \) must be divisible by the \(\text{lcm}(2, 3^2, 4, 20) = 180 = 2 \cdot 3^2 \cdot 2 \cdot 5 \) so \(y = 10 \cdot y_1 \) with some \(y_1 \) not divisible by 3.

To adapt the lhs getting the primefactors 7, 18, 73 we consider that we have
\[
\begin{align*}
\{3^n - 1, 7\} &= [n: 6] (1 + \{n, 7\}) \\
\{3^n - 1, 19\} &= [n: 18] (1 + \{n, 19\}) \\
\{3^n - 1, 73\} &= [n: 12] (1 + \{n, 73\})
\end{align*}
\]

so \(2 \cdot 3^2 \cdot x \) must be divisible by the \(\text{lcm}(2^3, 6, 18, 12) = 2^3 \cdot 9 = 72 \) so \(x = 9 \cdot x_1 \) with some \(x_1 \) not divisible by 2.

Setting now provisorically \(x_1 = y_1 = 1 \) we get new sets of primefactors. We get
\[
\begin{align*}
\text{lhs} &= (2^5) \cdot 5 \cdot 41 \cdot 7 \cdot 19 \cdot 73 \cdot 13 \cdot 37 \cdot 757 \cdot \ldots \text{(one more)} \\
\text{rhs} &= (3^3) \cdot 7 \cdot 19 \cdot 73 \cdot 5 \cdot 41 \cdot 5 \cdot 11 \cdot 13 \cdot 31 \cdot 37 \cdot 61 \cdot 109 \cdot 151 \cdot 181 \cdot 331 \cdot 631 \cdot \ldots \text{(some more)}
\end{align*}
\]

(the primefactors in parentheses are cancelled by the denominators, green marked ones occur by the basic equality, setting \(x = y = 1 \), the yellow marked are adapted by the operation in the exponent and the remaining might be called "collateral" occurrences)

If we now adapt the list of primefactors again, we want to get in the rhs the primefactor 757. But \(\lambda_{757}(2, 1) = 756 = 2^2 \cdot 3^3 \cdot 7 \) and this means, on the rhs we get \(\{2 \cdot 3^2 \cdot 2^5 \cdot 3 \cdot 757 - 1, 3\} = 4 \) which means that the rhs becomes divisible by \(3^4 \) instead of \(3^3 \), and after cancelling by the denominator we get thus one remaining primefactor 3 in the rhs.

The lhs cannot have a primefactor 3, so we arrive at a contradiction: the lhs and rhs cannot be equal and thus we cannot have a second solution for the problem in question.
This method can easily be adapted for other configurations; practically in a software implementation we need one initializing-step which sets the valuation-formulae for some sufficient subset of first primes for the \(\text{lhs} \) and for the \(\text{rhs} \), and then, on the \(k \)’th iteration the required \(x_k \) and \(y_k \) must be determined, then for each side the set of included prime-factors, then that two sets must be joined (using the highest exponent per primefactor) and new \(x_{k+1} \) and \(y_{k+1} \) must be computed until the contradiction occurs.

3.4 Common factors of Fermat-numbers \(2^{2^n} + 1 \) and powertowers \(2^{2^{2^{\ldots}}} + 1 \)?

a) Fermatnumbers Fermat-numbers are defined as

\[
F_n = 2^{2^n} + 1 = F_n(2)
\]

and generalized:

\[
F_n(b) = b^{2^n} + 1 \quad \text{(see wikipedia for more of this)}
\]

By the general relation \(g(m) = \frac{f(2m)}{f(m)} \) we have for any primefactor \(p \) and exponent \(m \)

\[
\{ g(m), p \} = \{ f(2m) / f(m), p \} = \{ f(2m), p \} - \{ f(m), p \} = [2m : \lambda_p] \cdot \{ \alpha_p + \{ 2m, p \} \} - [m : \lambda_p] \cdot \{ \alpha_p + \{ m, p \} \}
\]

and we can only have \(p \) in the expression when \(\lambda_p \) divides \(2m \) but not \(m \), so it must have one more instance of the primefactor \(2 \) than \(m \). Moreover, for odd primefactors \(p \) the braces \(\{2m, p\} \) and \(\{m, p\} \) evaluate to the same value. Thus we can reduce the expression for \(g(m) \) to

\[
\{ g(m), p \} = \{ \lambda_p \} \cdot \alpha_p + \{ m, p \}
\]

For Fermat numbers the variable \(m \) has the special form of a perfect power \(m = 2^n \) and we get

\[
\{ g(2^n), p \} = \{ 2^{n+1} : \lambda_p \} \cdot \{ \alpha_p + \{ 2^n, p \} \}
\]

Here to have \(\lambda_p \) dividing \(2^{n+1} \) but not \(2^n \) means, that \(\lambda_p \) must precisely equal \(2^{n+1} \). Additionally, the valuation-expression \(\{2^n,p\} \) evaluates to zero for any odd primenumber \(p \). So we can write the much reduced form:

\[
\{ g(2^n), p \} = [2^{n+1} : \lambda_p] \cdot \alpha_p
\]

and because every prime factor \(p \) has of course only one cyclelength \(\lambda_p \) this shows, that the sets of primefactors of any two different Fermat numbers must be disjunct.

Interestingly, we have no special reference made to the property of the basis \(b \) in \(g_b(n) \) being \(b=2 \), so this inherits in principle to all bases \(b \).
b) **Powertowers:** one occasionally asked question can immediately be answered: can b^{n+1} and $b^{2^{n}+1}$ have common primefactors?

If $b = 2$ and $n=2$ or any powertower of 2 then this is the question of common factors of Fermat numbers where a "Fermat number" F_n is defined as

$$F_n = 2^{2^n} + 1$$

and a "powertowered" Fermat prime if n itself is a powertower to base 2

$$F_{2^{r_n}} = 2^{2^{2^{r_n}}} + 1$$

and more general for the iterated case

$$F_{2^n} = 2^{2^{n+1}} + 1$$ // in a common use of notation ”n2“ for the tetration base 2

We write the primefactor-decompositions of both formulae, letting the base b indetermined:

$$b^{2^n} + 1 = \prod_{p \text{ odd primes}} p^{\frac{2^n - 1}{\lambda_p}} \left(\frac{\lambda_p + \left[\frac{2^n}{\lambda_p}\right]}{\lambda_p}\right)$$

$$b^n + 1 = \prod_{p \text{ odd primes}} p^{\frac{n - 1}{\lambda_p}} \left(\frac{\lambda_p + \left[\frac{n}{\lambda_p}\right]}{\lambda_p}\right)$$

We look at the parentheses in the exponent of the first product:

we have, that (for a current prime p) λ_p must divide a perfect power of 2 and must itself be a perfect power of 2. To provide a value of 1 for the parenthesis, it must exactly equal 2^{n+1} otherwise the whole parentheses is zero and the primefactor does not occur in the lhs.

But if now for some p its "length" is $\lambda_p = 2^{n+1}$ then it cannot at the same time be a divisor of $2n$ or even of n in the exponent of the second product since $2^{n+1} > 2 \cdot n > n$ for $n > 0$; so any prime p can only alternatively occur: exclusively either in the first or in the second expression.

We did not make an assumption about the height of the powertower $n=k, 2^k, 2^{2^k}, \ldots$, so this can easily be generalized by induction. Note also, that we did not make use of the restriction for the base $b=2$, so this is a property not only of "powertowered" Fermat-numbers (defined for base $b=2$)

(In an answer in MO I found this nice references7,8)

7 On p. 167 of "Beiträge zur Zahlentheorie, insbesondere zur Kreis- und Kugeltheilung, mit einem Nachtrage zur Theorie der Gleichungen (1891)", Scheffler deduces the infinitude of primes from the fact that Fermat numbers are pairwise coprime.

http://www.archive.org/stream/beitrgezurzahle00schegoog#page/n185/mode/1up

8 A. Hurwitz’s list of exercises in Number Theory was actually published in 1993! A PDF copy of the transcription of this document can be found here: goo.gl/vVGJPW
3.5 The "chinese"-primality test

The so called "chinese"-primality test for a number \(n \) is to calculate, using \(f_{2,1}(n) \) with base 2:

\[
y = 2^{n-1} - 1 \pmod{n}
\]

If \(y<0 \), then we know that \(n \) is composite. Unfortunately the converse is not true. For some \(n \) we get \(y=0 \) although \(n \) is not prime. Such \(n \) are called "fermat pseudo-primes" (to base 2). This imperfect prime-detection property extends to other bases coprime to \(n \) as well. However, different bases \(b \) give sometimes different results and so they may correct each other, and only if we check all bases \(b<n \) we get a decisive result: if all results are \(0 \) then \(n \) is prime.

Such pseudopravity of \(n \) consists of two or more prime-factors whose cycle-lengths agree to divide \(n-1 \). Let \(n= p\cdot q \) then, being fermat-pseudoprime, \(2^{n-1}-1 \) must contain those factors (among others, which are collected in the indeterminate \(x \))

\[
y_2 = 2^{pq-1} - 1 = p^{x_{pq-1}(\alpha_p+(pq-1,p))} q^{x_{pq-1}(\alpha_q+(pq-1,q))} \cdot x
\]

which can directly be reduced (since \(pq\cdot 1,p)=0 \) and \((pq-1,q)=0 \) to

\[
y_2 = 2^{pq-1} - 1 = p^{\alpha_p} q^{\alpha_q} \cdot x
\]

Remember that each prime and its length-function are related by \(p = k\cdot \lambda_p + 1 \) (and then also that \(q = j\cdot \lambda_q + 1 \)) - with some positive integers \(k,j \) - then the "divides"-expression in the Iversonbracket in the exponent \([n-1:\lambda_p] = [pq-1: \lambda_p] \) at primefactor \(p \) is

\[
[(k \lambda_p +1) (j \lambda_q +1) -1] : \lambda_p] = [k \lambda_p : \lambda_q] = [j \lambda_q : \lambda_p]
\]

So \(p \) and \(q \) are contained in \(2^{n-1} - 1 \) if \([j \lambda_q : \lambda_p] = [k \lambda_p : \lambda_q] = 1 \), and this is trivially true, if \(\lambda_p = \lambda_q \)

Let's use two primes \(p, q \) which have \(\lambda \) being a multiple of 5, so \(p=11 \), having \(\lambda_p=10 \), and \(q=31 \), having \(\lambda_q=5 \). Then

\[
2^{pq-1} - 1 = 2^{10+30+10+30} - 1 = 11^{340} \cdot 31^{540} \cdot x = 11 \star 31 \star x
\]

and indeed \((2^{n-1,11})=1 \) and \((2^{n-1,31})=1 \) and thus \((2^{n-1,n})=1 \) does not detect, that \(n \) is composite, so \(n \) is (fermat-) pseudoprime to base 2.

Actually \(n=11\cdot 31=341 \) is also the first fermat-pseudoprime to base 2

However, using base \(b=3 \) we get by different cycle-lengths \(\lambda \)

\[
pq-1=11\cdot 31-1 = (10+1)(30+1)-1 = 10 \cdot 30 + 10 + 30 \ (= 340)
\]

\[
\lambda_{11}(3,1)=5 \qquad \alpha_{11}(3,1)=2
\]

\[
\lambda_{31}(3,1)=30 \qquad \alpha_{31}(3,1)=1
\]

\[
y_3 = 3^{10+30+10+30} - 1 = 11^{540} \cdot 31^{540} \cdot x = 11^2 \star 31^0 \star x
\]

and \(y_3 \) does not contain the primefactor \(q \), and thus \((3^{n-1} - 1, \ n)=0 \); this time showing that \(n \) is not prime.
The fermat-primetest can be improved this way; however there are numbers \(n \) which are pseudoprime to all bases \(b < n \) where also \(\gcd(b,n)=1 \). Such numbers are called "Carmichael-numbers"; the first one is \(n=561 \). For such numbers the actual primality-certificate based on the fermat-primality test is as expensive as a dumb trial-division.

\[
\begin{align*}
\text{base 2:} & \quad \lambda_3(2,1) = 2 & \alpha_3(2,1) &= 1 \\
\lambda_{12}(2,1) = 10 & \alpha_{12}(2,1) &= 1 \\
\lambda_{17}(2,1) = 8 & \alpha_{17}(2,1) &= 1 \\
\end{align*}
\]

\[
f_{2,1}(561-1) = 2^{560} - 1 = 3 \cdot 11 \cdot 17^8 \cdot x = 3 \cdot 11 \cdot 17^8 \cdot x \\
\equiv 0 \pmod{n} \\
\Rightarrow \text{pseudoprime}
\]

\[
\begin{align*}
\text{base 3:} & \quad f_{3,1}(561-1) \\
\text{base 3 is not coprime with } n \\
\text{base 5:} & \quad \lambda_3(5,1) = 2 & \alpha_3(5,1) &= 1 \\
\lambda_{12}(5,1) = 5 & \alpha_{12}(5,1) &= 1 \\
\lambda_{17}(5,1) = 16 & \alpha_{17}(5,1) &= 1 \\
\end{align*}
\]

\[
f_{5,1}(561-1) = 5^{560} - 1 = 3 \cdot 11 \cdot 17^{16} \cdot x = 3 \cdot 11 \cdot 17^{16} \cdot x \\
\equiv 0 \pmod{n} \\
\Rightarrow \text{pseudoprime}
\]

and so on with the remaining bases smaller and coprime to \(n \).

3.6 The Zsigmondy-theorem

This theorem expressed in the current notation is

Let \(p,q,r,s,t,e \) be primes

Then write the primefactorizations

\[
\begin{align*}
f_{b,a}(s) &= \prod_{c \in A} e^{\alpha(s,c)} \prod_{p \in P} p^{a_p(s,p)} \\
f_{b,a}(t) &= \prod_{c \in A} e^{\alpha(t,c)} \prod_{q \in Q} q^{a_q(t,q)}
\end{align*}
\]

Then if we look at \(f_{b,a}(s \cdot t) \) we shall not only have the product of the two single products but a new set of primefactors \(r \) whose length function is \(\lambda_r = s \cdot t \):

\[
f_{b,a}(s \cdot t) = \prod_{c \in A} e^{\alpha(s \cdot t,c)} \prod_{p \in P} p^{a_p(s \cdot t,p)} \prod_{q \in Q} q^{a_q(s \cdot t,q)} \prod_{r \in R} r^{a_r(s \cdot t,r)}
\]

(from wikipedia: Zsigmondy's theorem)

In number theory, Zsigmondy's theorem, named after Karl Zsigmondy, states that if \(a > b > 0 \) are coprime integers, then for any natural number \(n > 1 \) there is a prime number \(p \) (called a primitive prime divisor) that divides \(b^n - a^n \) and does not divide \(b^k - a^k \) for any positive integer \(k < n \), with the following exceptions:

- \(a = 2, b = 1, \) and \(n = 6; \) or
- \(a + b \) is a power of two, and \(n = 2. \)

This generalizes Bang's theorem, which states that if \(n>1 \) and \(n \) is not equal to 6, then \(2^n-1 \) has a prime divisor not dividing any \(2^k-1 \) with \(k < n \).

Similarly, \(b^a + a^b \) has at least one primitive prime divisor with the exception \(2^3 + 1^3 = 9 \).
From the representation of \(f_{b,a}(n) \) in the proposed form of primefactorization it is obvious, that if some primes \(p_k \) divide \(f_{b,a}(q) \), where \(q \) is also prime, then that same primes divide composite \(n \) which contain \(q \) as factor.

\[
(3.6.4) \quad f_{b,a}(n) = f_{b,a}(q_1^{e_1}q_2^{e_2}q_3^{e_3})
\]

\[
= \prod_{\text{odd primes}} p^{e_1} \prod_{\text{odd primes}} p^{e_2} \prod_{\text{odd primes}} p^{e_3}
\]

contains at least the same primefactors as

\[
= x * \prod_{\text{odd primes}} p^{e_1} \prod_{\text{odd primes}} p^{e_2} \prod_{\text{odd primes}} p^{e_3}
\]

But empirically more is true: apparently the composite \(n \) does not only produce the primefactors \(p_k \) in \(f_{b,a}(n) \) according to its own primefactors \(q_k \), but also additional primefactors \(p_m \), which do not account to the factors of \(n \).

This can also immediately be seen by that representation: there may exist some primefactors \(p_m \) which have a length-function equal to some partial \textit{product} of the \(q \)-primefactors.

\[
= x * \prod_{\text{odd primes}} p^{e_1} \prod_{\text{odd primes}} p^{e_2} \prod_{\text{odd primes}} p^{e_3} \prod_{\text{odd primes}} p_m^{e_m} \prod_{\text{odd primes}} p_m^{e_m} \prod_{\text{odd primes}} p_m^{e_m}
\]

This can also be seen, if we consider, that \(f_{b,a}(n) \) with \(n \) consisting of two primefactors \(q \) and \(r \) is divisible by the factors

\[
b^{q}r-a^{q}r = (b-a) * x_1
\]

\[
= (b^{q})r-(a^{q})r = ((b^{q})-(a^{q})) * x_2
\]

\[
= (b^{q})r-(a^{q})q = ((b^{q})-(a^{q})) * x_3
\]

where also the latter two factors can be factorized:

\[
b^{q}r-a^{q}r = (b-a) * x_1
\]

\[
= (b^{q})r-(a^{q})r = (b-a) [(b^{q})-(a^{q})]/(b-a)] * x_4
\]

\[
= (b^{q})r-(a^{q})q = (b-a) [(b^{q})-(a^{q})]/(b-a)] * x_5
\]

where the \([\]\)-bracketed terms \textit{(not an Iverson-bracket here!)} are coprime, because their (prime) exponents are different. Because of this we can still proceed and even write

\[
(3.6.5) \quad = (b^{q})r-(a^{q})q = (b-a) [(b^{q})-(a^{q})]/(b-a)] * x_6
\]

Actually, Zsigmondy has proved, that this holds generally with the exception of \(f_{2,1}(6)=63 \) which contains only factors which are already contained in \(f_{2,1}(3) \) and \(f_{2,1}(2) \).

3.7 Mersenne-numbers

For the case of \((b,a)=(2,1) \) we call \(f_{2,1}(n)=2^n-1 \) a "Mersenne-number" \(M_n \). In a more strict usage it is required that \(n \) is in fact a prime \(q \), which is also common. We use the strict \textit{definition} in this chapter, but shall use the non-strict \textit{definition} in the chapter on "iterated Mersenne numbers".

In the notation of cyclic-subgroup-functions this reads like:

\[
(3.7.1) \quad M_q = 2^q-1 = \prod_{\text{odd primes}} p^{(a^{p}+(q,p))}
\]

// \(q \) is prime
More explicite,

\[2^q - 1 = 3^\theta \cdot 5^\eta \cdot 7^\zeta \cdot 11^\chi \cdot 1093^\upsilon \cdot 11^\chi \cdot 7^\zeta \cdot 5^\eta \cdot 3^\theta \cdot \ldots \cdot 1093^\upsilon \]

where also the Wieferich-primefactor \(p=1093 \) is explicitly displayed for reminding the reader of special cases.

The primefactor 2 cannot occur, so we need not consider its properties here.

Since mersenne-numbers in the strict sense are only defined for prime \(q \), we see that only primefactors can occur, which have prime cycle-lengthes \(\lambda_p=q \). (or \(\lambda_p=1 \) but this cannot occur since \(2^q-1=1<p \) for all \(k \))

For instance the primefactor \(p=5 \) cannot occur in any strict Mersenne-number \(M_q \), because \(\lambda_p=4 \) never divides any prime \(q \), as well as \(p=11 \) cannot occur and others. Also the two known Wieferich-primefactors \(p=1093 \) and \(p=3511 \) cannot occur, since their cycle-lengthes are \(\lambda_{1093}=2^2 \cdot 7 \cdot 13 \) and \(\lambda_{3511}=3^3 \cdot 5 \cdot 13 \) and thus not prime. So we can reduce the list of candidate primefactors to

\[2^q - 1 = 3^\theta \cdot 5^\eta \cdot 7^\zeta \cdot 11^\chi \cdot 89^\upsilon \cdot 47^\chi \cdot 31^\zeta \cdot 23^\eta \cdot 7^\zeta \cdot 5^\eta \cdot 3^\theta \cdot \ldots \cdot 89^\upsilon \]

Now because \(\lambda_p \) and \(p \) are always different and share no common factor, in the cases that \(\lambda_p \) equals \(q \), then \(p \) itself cannot equal \(q \). Thus we can cancel all valuation-braces:

\[2^q - 1 = 3^\theta \cdot 7^\zeta \cdot 11^\chi \cdot 89^\upsilon \cdot 47^\chi \cdot 31^\zeta \cdot 23^\eta \cdot \ldots \]

and we have a pretty direct representation for the primefactor-decomposition of Mersenne-numbers \(M_p \). Note, that in the example I've still documented the \(\alpha_p \)-values being \(1 \); because it is not yet known whether there exists another Wieferich-prime (having \(\alpha_p>1 \)) at all or even with a cyclelength which is prime (For the cyclotomic version of \(f_b(n) \) with base \(b=3 \) for instance there exists such a "generalized Wieferich prime" \(p=11 \), which has a prime cyclelength \(\lambda_p=5 \) and occurs with \(\alpha_{11}=\{3^{\lambda_{11}}-1,11\}=2 \) so such a similar occurence for Mersenne-numbers cannot easily be excluded).

Mersenne-primes

Now, when is a Mersenne-number also prime?

We see, that the cycle-length \(\lambda_p=11 \) occurs two times: at \(p=23 \) and at \(p=89 \), thus the Mersenne-number \(M_{11}=2^{11}-1 \) has that two primefactors and is thus not prime. Consequently \(M_{11}=2047 \) does not occur in the list of possible primefactors of another \(M_m \). The prime cycle-lengthes \(\lambda_p=2,3,5,... \) occur only once or: "for one primefactor \(p \) only", so \(q=2,3,5,... \) define Mersenne-numbers with only one primefactor and such \(M_q \) are now "Mersenne-primes".

"**Unique**" or "unshared" primes (primal cycle-lengthes \(\lambda \))

I tend to introduce that property as new term: the primal cycle-lengthes, which occur only once may be called themselves (Mersenne) "**unique primes**" and the other prime lengths (which occur for more primefactors \(p \)) may be called (Mersenne) "**shared primes**". Then we can say: the set \(U = \{2,3,5,7,13,17,19,31,...\} \) of unique/unshared primes \(u \) defines the set of prime Mersenne-numbers \(M_u \)

\[(3.7.5) \quad \text{Let } 2^u - 1 = M_u \quad \text{then } \quad u \in U \leftrightarrow M_u \text{ is prime} \]

Do all prime cycle-lengthes occur?

If the above list is short, we'll miss the prime cycle-length \(\lambda_p=7 \). We could ask, whether all prime cycle-lengthes must occur.
The answer is easy: \(M_q = 2^q - 1 \) is either prime or composite.

- If \(M_q \) is prime, then it is also the primefactor having cycle-length \(\lambda_p = q \); and \(\lambda_p \) exists.
- If \(M_q \) is composite then it has two or more primefactors, all with the same cycle-length \(\lambda_p = \lambda_q = q \) (\(q \) is prime having no smaller factors) thus also this \(\lambda_p \) exists.

Since \(q \) can be any prime, this holds for all \(q \) and this means all primes occur at least one time as cycle-length \(\lambda_p \).

3.8 Iterated Mersenne-type numbers (iterated \(b^n - 1 \) where \(n \) is any positive integer)

a) Mersenne numbers (\(b^n - 1 \) with \(b=2 \))

We look at the primefactor composition of iterated Mersenne-numbers, like

\[
(3.8.1) \quad n_1 = 2^n - 1, \quad n_2 = 2^{n_1} - 1, \quad n_3 = 2^{n_2} - 1, \quad n_4 = \ldots
\]

using the algebraic formulae introduced in the previous chapters.

When we look at a primefactor \(q \) then we need to get its cyclelength \(\lambda_q \). But when we iterate this, we need in the next iteration that \(\lambda_q \) in the place of \(q \) and thus have to compute \(\lambda_{\lambda_q} < \lambda_q \). By iterating, this means obviously a finite descent down to 1 or 0 or "undefined", which resembles roughly the \(h \)-times iterating of the logarithm of a number until \(\log^h(x) \sim 1 \).

Moreover, because in most cases \(\lambda_q \) is not prime, we must generalize the cyclelength function to composite \(q \) and also must give a defined value for \(\lambda_q(b,1) \) where \(\gcd(b,q) > 1 \). So we should write down a list for all possible primefactors \(q \) even if \(\gcd(b,q) > 1 \).

So we note first the (trivial) evaluation for the smallest primefactor \(p=2 \) (for save of notation writing \(n \) for \(n_0 \)):

\[
(3.8.2) \quad \{n_1,2\} : \{2^n - 1,2\} = 0
\]

meaning that \(n_1 \) for no \(n \) can be even, shall never be divisible by 2.

Then the list of the larger (=odd) primefactors shows slightly variable behaviour:

\[
(3.8.3) \quad \{n_2,3\} : \{2^n - 1,3\} = = \frac{n}{3} (1 + \{n,3\})
\]

\[
\{n_3,3\} : \{2^{n_2} - 1,3\} = = \frac{2^{n_2} - 1,3}{2} (1 + \{2^{n_2} - 1,3\}) = 0
\]

so no iterated \(n_{2,3} \) contains the primefactor 3

\[
(3.8.4) \quad \{n_5,5\} : \{2^n - 1,5\} = = \frac{n}{5} (1 + \{n,5\})
\]

\[
\{n_4,5\} : \{2^{n_4} - 1,5\} = = \frac{2^{n_4} - 1,5}{4} (1 + \{2^{n_4} - 1,5\}) = 0
\]

so no iterated \(n_{2,3} \) contains the primefactor 5
\[
\{n,7\} : (2^n - 1,7) = \frac{n}{3}(1 + \{n,7\})
\]

\[
\{n,7\} : (2^{n-1} - 1,7) = \frac{2^{n-1}}{3}(1 + (2^n - 1,7)) = \frac{n}{2}(1 + \frac{n}{3}(1 + \{n,7\}))
\]

\[
\{n,7\} : (2^n - 1,7) = \frac{n}{3}(1 + (2^n - 1,7)) = 0
\]

so \(n_2\) where \(n\) is even contain the primefactor \(7\), but no iterated \(n_{k>2}\)

\[
\{n,11\} : (2^n - 1,11) = \frac{n}{10}(1 + \{n,11\})
\]

\[
\{n,11\} : (2^{n-1} - 1,11) = \frac{2^{n-1}}{10}(1 + (2^n - 1,11)) = 0
\]

so no iterated \(n_{k>2}\) contains the primefactor \(11\)

\[
\{n,23\} : (2^n - 1,23) = \frac{n}{11}(1 + \{n,23\})
\]

\[
\{n,23\} : (2^{n-1} - 1,23) = \frac{2^{n-1}}{11}(1 + (2^n - 1,23)) = \frac{n}{10}(1 + \frac{n}{11}(1 + \{n,23\}))
\]

\[
\{n,23\} : (2^n - 1,23) = \frac{n}{11}(1 + \{n,23\}) = 0
\]

so \(n_2\) where \([n:10]=1\) contain the primefactor \(23\), but no iterated \(n_{k>2}\)

Of special interest is perhaps the primefactor \(p=127\), because it is in the Mersenne-prime chain \(2,M_2=3, M_3=7, M_7=127, M_{127}=M_{127}\), which all are known to be prime:

\[
\{n,127\} : (2^n - 1,127) = \frac{n}{7}(1 + \{n,127\})
\]

\[
\{n,127\} : (2^n - 1,127) = \frac{n}{7}(1 + \{n,127\}) = \frac{n}{3}(1 + \frac{n}{7}(1 + \{n,127\}))
\]

\[
\{n,127\} : (2^n - 1,127) = \frac{n}{7}(1 + \{n,127\}) = \frac{n}{2}(1 + \frac{n}{3}(1 + \frac{n}{7}(1 + \{n,127\})))
\]

\[
\{n,127\} : (2^n - 1,127) = \frac{n}{7}(1 + \{n,127\}) = 0
\]

so even \(n_2\) where \([n:2]=1\) contain the primefactor \(127\), but no iterated \(n_{k>3}\)

Since we know that \(M_{127} = 2^{127} - 1\) is also prime, we can easily copy that pattern to conclude, that we shall have up to \(n_4\) being divisible by \(M_{127}\) and first time \(\{n_5, M_{127}\}=0\).

Wieferich primes:

\[
\{n,1093\} : (2^n - 1,1093) = \frac{n}{364}(2 + \{n,1093\})
\]

\[
\{n,1093\} : (2^{n-1} - 1,1093) = \frac{2^{n-1}}{364}(2 + (2^n - 1,1093)) = 0
\]

while \(n_1\) can contain \(1093\) to the second power (but not to the first!) no iterated \(n_{k>1}\) contains the primefactor \(1093\)

\[
\{n,3511\} : (2^n - 1,3511) = \frac{n}{1755}(2 + \{n,3511\})
\]

\[
\{n,3511\} : (2^{n-1} - 1,3511) = \frac{2^{n-1}}{1755}(2 + (2^n - 1,3511)) = \frac{n}{36}(2 + \frac{n}{1755}(2 + \{n,3511\}))
\]

\[
\{n,3511\} : (2^n - 1,3511) = \frac{2^{n-1}}{36}(2 + (2^n - 1,3511)) = 0(...)
\]

While \(n_1\) can contain \(3511\) to the second power (but not to the first!), \(n_2\) can contain it to the \(2^{nd}, 4^{th}, 5^{th}, 6^{th}, \ldots\) (but not to the \(1^{st}\) or \(3^{rd}\)(!)) power, and no iterated \(n_{k>2}\) contains the primefactor \(3511\)
What we are essentially doing here is to iterate the lambda-function λ_p. This includes here also to generalize it to λ_m where m is no more prime. Iterations of this tend always to smaller numbers and finally to zero, so we can see, that for each primefactor p we have $(n_0,p)=0$ for some $k>K$ where the upper bound $K>1$ is some small number (equal or smaller than the height of the iterated base-2-logarithm $\log_2(1+x)$ applied to p).

b) Numbers of the form b^n-1 with $b=3$

We look at the primefactor composition of iterated Mersenne-like numbers 3^n-1, like

$$(3.8.11) \quad n_1 = 3^n-1 \quad n_2 = 3^{n_1}-1 \quad n_3 = 3^{n_2}-1 \quad n_4 = ...$$

The list for the first few primefactors p

$$(3.8.12) \quad \{n_2,2\} : \{3^n-1,2\} = 1+[n:2]+\{n,2\}$$

Then

$$(3.8.13) \quad \{n_2,2\} : \{3^n-1,2\} = 1+[n:2]+\{n,2\} = 3+[n:2]+\{n,2\}$$

and in general, for $h>0$, where $n_0=n$

$$(3.8.14) \quad \{n_2,2\} : \{3^n-1,2\} = 1+[n_{h-1}:2]+\{n_{h-1},2\} = 2h-1+[n:2]+\{n,2\}$$

and for iteration $h>>2$

$$(3.8.15) \quad \{n_5,5\} : \{3^n-1,5\} = h-2+\frac{n}2+\frac{n}4+\frac{n}4+\frac{n}4+\frac{n}5$$

so all iterated $n_{b>2}$ contain the primefactor 5

$$(3.8.16) \quad \{n_5,5\} : \{3^n-1,5\} = h-2+\frac{n}2+\frac{n}4+\frac{n}4+\frac{n}5$$

so all iterated $n_{b>2}$ do not contain the primefactor 7
\[\{n_1,1\} : (3^{n_1} - 1,11) = \prod_{\text{prime } p} \left(1 - \frac{1}{p^{n_1}} \right) \]

\[= \frac{3^{n_1-1}}{2} \left(2 + \{n_1,1\} \right) = \frac{n}{4} \left(2 + \frac{2}{5} \left(2 + \{n,1\} \right) \right) \]

\[= 2^{-\frac{a}{5}} + 2^{-\frac{a}{5}} + \frac{n}{4} \left(2 + \{n,1\} \right) \]

\[= 2^{\frac{a}{2}} + 2^{\frac{a}{2}} + \frac{n}{4} \left(2 + \{n,1\} \right) \]

\[= 2^{-\frac{a}{5}} + 2^{-\frac{a}{5}} + \frac{n}{4} \left(2 + \{n,1\} \right) \]

\[= 2 + 2^{-\frac{a}{2}} + 2^{\frac{a}{2}} + \frac{n}{4} \left(2 + \{n,1\} \right) \]

\[= 4 + 2^{-\frac{a}{2}} + 2^{\frac{a}{2}} + \frac{n}{4} \left(2 + \{n,1\} \right) \]

and for iteration \(h \geq 3 \)

\[\{n_1,1\} : (3^{n_1} - 1,11) = 2^{h-3} \left(h - 3 + \frac{n}{2} + \frac{n}{4} \right) + \frac{n}{4} \left(n,1 \right) \]

so all iterated \(n_{b>3} \) contain the prime factor 11

3.9 Cyclotomic Expressions/Repunits/q-Analogues

An interesting variation of the function \(f_{b,a}(n) \) is the "cyclotomic" version

\[c_{b,a}(n) = \frac{f_{b,a}(n)}{f_{b,a}(1)} = b^n - a^n = b^{n-1} + b^{n-2} a + b^{n-3} a^2 + \ldots + a^{n-2} + a^{n-1} \]

For the introduction let's look at that simpler expression with \(a=1 \) first

\[c_b(n) = \frac{f_b(n)}{f_b(1)} = b^n - 1 = b^{n-1} + b^{n-2} + b^{n-3} + \ldots + b + 1 = [n]_b \]

The latter expressions are also called "repunits"\(^9\), because in the number-system with base \(b \) they are written as string with \(n \) ones: \(11111111_{b} \). Also they are known as \(q \)-analogues which are usually denoted as \([n]_b\)

The primefactorization changes in the following way. In the factorization of \(f_b(n) \) we find all primefactors which are also factors of \(f_b(1) = b - 1 \) - thus they have the order/cycle-length \(\lambda_p = 1 \). We denote this group of primefactors with the letter \(r \). Then the primefactor-decomposition looks like

\[b^n - 1 = \prod_{\text{primes } \lambda_p > 1}^{\text{odd}} p^{n-(n,r)} \ast \prod_{\text{primes } \lambda_p = 1}^{\text{odd}} p^{n-(n,r)} \]

Since

\[\text{(3.9.3)} \]

\[\text{(3.9.2)} \]

\[\text{(3.9.1)} \]

\[\text{9} \text{ See for instance Eric Weissstein's Mathworld-entry: http://mathworld.wolfram.com/Repunit.html} \]
the construction of the cyclotomic version means just to remove that last product-expression:

\[b^n - 1 = \prod_{r \text{ odd primes } \lambda > 1} p_r^{\lambda(r,n,r)} \prod_{\text{rec. odd primes } \lambda = 1} p_r^{(n,r)} \]

and the primefactors \(r \) occur exactly when \(r \) divides \(n \) or \([n:r] = 1 \).

Sidenote: the right-most productterm in that formula is similar to the productformula for \(n \):

\[n = \prod_{\text{rec. primes } r} r^{(n,r)} \]

which is interestingly also true, when in calculus the \(\lim_{b \to 1} [n]_b \) is invoked (a well known property of "q-analogues")

3.10 Primefactors in the Lucas-sequence

A view on the modular properties of the Lucas-sequence, in a usenet-discussion 2005:

Am 03.12.2005 03:53 schrieb c***@c***.com:

```
>>> It is easily shown that the Lucas sequence
>>> 1, 3, 4, 7, 11, 18, 29, 47,
>>> contains no multiples of 5.
>>> Right. The mod5 sequence is 1, 3, 4, 2, 1, 3, at which point you have a
>>> string of 2 repeating, so you know it's an endless loop and will never hit 0.
>>>
>>> Moreover, it contains no multiples of 8, 12, 13, 17, 21, 28, 33, 37,
>>> 53, 57, 61, 69, 73, 77, 87, 89, 92, 93, or 97.
>>> Right now I do not know how to decide, for given \( n \), whether the Lucas
>>> sequence contains multiples of \( n \). Similarly I would like to decide
>>> for given a, b, \( n \), whether the generalized Fibonacci sequence (a, b,
>>> a+b, a+2b, 2a+3b, ...) contains multiples of \( n \).
>
>>> You could run through the sequence mod \( n \) until it repeats. It will
>>> definitely repeat before term \( n^2 \). (Maybe somebody else can put a tighter
>>> bound on it.)
>>>
>>> The following link:
>>>
>>> http://www.mathpages.com/home/kmath078.htm
>>> has some relevant calculations; in particular, for the Lucas sequence,
>>> the upper bound appears to be \( 4*n \), while for the Fib. sequence, it is
>>> \( 6*n \).
```
since you coin the cyclicity of the modules, I'll apply my approach to that question: to find the "order of the cyclic subgroup modulo any prime \(p \)" (call it \(\lambda_p(b,a) \)) and analyze them in a joint framework for all primefactors; here for the expression

\[
(3.10.1) \quad g_{b,a}(n) = b^n + a^n
\]

where

\[
(3.10.2) \quad b = (1+\sqrt{5})/2 = \phi \quad a = (1-\sqrt{5})/2 = -1/\phi
\]

which generates the Lucas-sequence \(<2,1,3,4,7,...> \) for subsequence \(n \geq 0 \).

The pair of bases \((b,a) \) has irrational values, so some "nonregular" effects concerning cycle-lengths etc. may occur. For instance for prime \(p=7 \) the cycle-length \(\lambda_7 \) is

\[
\lambda_7(\phi,-1/\phi) = 8
\]

and the first occurrence of the primefactor \(p=7 \) in \(g(n) \) is at \(n=4 \). Thus, instead of having a cycle-length being a divisor of \(p-1 \) we find a cycle-length being a divisor of \(p+1 \).

Translation to the fibonacci-sequence

To understand the following expression for primefactorization it may be useful to notice another identity.

According to the discussion (*here in chap 1*) we can see \(g_{b,a}(n) \) as quotient \(f_{b,a}(2n)/f_{b,a}(1) \), and the function \(f_{b,a}(n)/f_{b,a}(1) \) is known as the generating function for the sequence of fibonacci-numbers \(<0,1,1,2,3,5,8,13,21,...> \) for \(n \geq 0 \).

So we can write

\[
(3.10.3) \quad g_{b,a}(n) = \frac{f_{b,a}(2n)/f_{b,a}(1)}{(b^n - a^n)/(b-a)} = \frac{b^{2n} - a^{2n}}{b^n - a^n}
\]

The cycle-lengths \(\lambda_p \) and the exponent at first occurrence \(\alpha_p \) must be determined for each prime individually; with that heuristics we get the following primefactor-decomposition for \(f_{b,a}(n)/f_{b,a}(1) = (b^n - a^n)/(b-a) \):

\[
(3.10.4) \quad \frac{b^n - a^n}{b-a} = 2^{\alpha_2 + \alpha_3} 3^{\alpha_3} 5^{\alpha_5} 7^{\alpha_7} 11^{\alpha_{11}} 13^{\alpha_{13}} 17^{\alpha_{17}} \ldots
\]

where I used the shorter notation \(\{p\cdot n, p\} \) for \((1+n,p) \).

It is interesting, that at \(p=2,3,7,13,17,...=5k\pm2 \) we have the cycle-lengths related to \(p+1 \), and at \(p=11,...,=5k\pm1 \) related to \(p-1 \), and at \(p=5 \) even directly related to \(p \) itself. (We have seen the latter effect in the paragraph about the cyclotomic functions). Heuristically it seems that

\[
(3.10.5) \quad \begin{align*}
\text{cycle-length equals } p=5 & \quad \text{: for } p=5 \\
\text{cycle-length divisor of } p-1 & \quad \text{: for } p\equiv 1 \pmod{5} \\
\text{cycle-length divisor of } p+1 & \quad \text{: for } p\equiv 2 \pmod{5}
\end{align*}
\]

So, if there is no "wieferich" effect and thus all "initial exponents" \(\alpha \) equal 1, then the above formula could even more be simplified.

Now, \(g_{b,a}(n) \) can be computed by \(f_{b,a}(2n)/f_{b,a}(n) \), and its primefactor-decomposition begins as follows:

\[
(3.10.6) \quad b^n + a^n
\]
Like in the earlier chapter we collect exponents; because the valuations \(v(2n)\) and \(v(n)\) are equal except for the primefactor \(2\):

\[
\begin{array}{c}
\lambda(2) = 2^{(2^r - 1 - 1)} \cdot 3^{(2^r - 1)} \cdot 5^{(2^r - 1 - 1)} \cdot 7^{(2^r - 1 - 1)} \cdot 11^{(2^r - 1 - 1)} \\
\end{array}
\]

As in the example before, all primefactors with odd \(\lambda()\) vanish because their "divides"-expression in the exponents cancel, so we have finally

\[
\begin{array}{c}
\lambda(2) = 2^{2^r - 1} \cdot 3^{2^r - 1} \cdot 5^{2^r - 1} \cdot 7^{2^r - 1} \cdot 11^{2^r - 1} \\
\end{array}
\]

where the exponent of \(p=2\) was also simplified.

From this we get the cycles for the primefactors \(2\leq p\leq 17\):

- \(p=2\): for \(n=6k\) we have \(2^4\); for \(n=6k-3\) we have \(2^2\)
- \(p=3\): cycle-length 4, beginning at \(n=2\)
- \(p=5\): -does not occur-
- \(p=7\): cycle-length 8, beginning at \(n=4\)
- \(p=11\): cycle-length 10, beginning at \(n=5\)
- \(p=13\): -does not occur-
- \(p=17\): -does not occur-

and also we can conclude from the properties of the prime-factors in the fibonacci-sequence to that of the lucas-sequence. The (super-)cycles for higher exponents are powers of the according prime as indicated by their valuation-terms \(\{p*n, p\}\).

3.11 A view into FLT

"Fermats last theorem" is somehow "the classical" problem to be expressed and studied with the "cyclic subgroups"-concept. We have the exponential diophantine equation

\[
(f_{b,a}(n) = b^n - a^n = c^n)
\]

which is now known to have no solution given \(b>a>c>0, n>2\). This can -without loss of generality- be reduced to

\[
(b^q - a^q = c^q)
\]

having \(gcd(b,a)=1, q\ prime\). Because exactly one of \(b,a,c\) must be even and we can order them such that the rhs is odd, we can omit the primefactor \(2\) in the primefactor decomposition of the lhs as well.

Amateurish approaches (like early fiddlings of mine) to that problem can at most give likelihoods, and also the notation in the current framework does not evolve to an elementary solution of the problem.

But it exposes another spotlight which I feel is intriguing: it reduces to the problem of existence of generalized Wieferich-primes (with additional properties required).

10 "last" means here: "last unsolved", now correctly "Wiles' theorem"
We restate the primefactorization for the lhs \(f_{b,a}(q) \) and exhibit conditions: \textit{when can this primefactorization be a perfect power} \(c^q \) \textit{where all primefactors of} \(c \) \textit{have the same exponent} \(q \) (or multiples of it)? Using the primefactorization of the lhs we get:

\[
\begin{align*}
(\text{3.11.3}) \quad b^q - a^q & = \prod_{\text{odd primes } p \mid \mathcal{c}} p^{\lambda_q(p) + \alpha_q(p)} \\
& = c^q
\end{align*}
\]

Here we know already, that the lhs, und thus the rhs, contains the factor \((b-a)\) which defines a set of primes \(r \) having cycle-lengthes \(\lambda_r=1 \), which we make explicite:

\[
\begin{align*}
(\text{3.11.4}) \quad b^q - a^q & = \prod_{\text{odd primes } r \mid (b-a)} r^{\alpha_r(r)} \cdot \prod_{\text{odd primes } p \mid \mathcal{c}} p^{\lambda_q(p) + \alpha_q(p)}
\end{align*}
\]

We can sharpen this formula a bit more.

First, for the primes \(p \) we can remove the valuation-brace because for some \(p \) if the \(\lambda_p>1 \) then it must \(\lambda_p=q \) because \(q \) is prime by assumption. But it cannot occur, that at the same time \(\lambda_p<p \) and \(p \) are equal to a prime \(q \). So we can reduce the second product-terms:

\[
\begin{align*}
(\text{3.11.5}) \quad b^q - a^q & = \prod_{\text{odd primes } r \mid (b-a)} r^{\alpha_r(r)} \cdot \prod_{\text{odd primes } p \mid \mathcal{c}} p^{\lambda_q(p) + \alpha_q(p)}
\end{align*}
\]

Second, looking at the \(r \)-primefactors we see, that the valuation-brace as well can be removed when \(r \neq q \). So the primefactor \(q \) plays a special role if it is factor of \((b-a)\) (means also: has cycle-length \(1 \)). So we make this explicite, too. The final formula looks then like

\[
\begin{align*}
(\text{3.11.6}) \quad b^q - a^q & = q^{\lambda_q(q)} \cdot \prod_{\text{odd primes } r \mid (b-a)} r^{\alpha_r(r)} \cdot \prod_{\text{odd primes } p \mid \mathcal{c}} p^{\lambda_q(p) + \alpha_q(p)}
\end{align*}
\]

and separated for the two cases for \([b-a : q]=1 \) (or \(\lambda_q=1 \)) and for \([b-a : q]=0 \) (or \(\lambda_q>1 \)):

\[
\begin{align*}
(\text{3.11.7}) \quad \text{Case 1: } q \text{ is primefactor of } (b-a) = f_{b,a}(1); \quad \text{that means: } \lambda_q=1 \text{ and } [b-a,q] = \alpha_q \\
& \quad b^q - a^q = q^{\alpha_q+\lambda_q} \cdot \prod_{\text{odd primes } r \mid (b-a) \neq q} r^{\alpha_r(r)} \cdot \prod_{\text{odd primes } p \mid \mathcal{c} \neq q} p^{\lambda_q(p) + \alpha_q(p)} \\
& \quad = q^{\alpha_q+1} \cdot \prod_{r \text{ odd primes } r \neq q} r^{\alpha_r(r)} \cdot \prod_{p \text{ odd primes } \mathcal{c} \neq q} p^{\lambda_q(p) + \alpha_q(p)}
\end{align*}
\]

\[
\begin{align*}
(\text{3.11.8}) \quad \text{Case 2. } q \text{ is not primefactor of } (b-a); \quad \lambda_q<1 \text{ (and can thus not occur in } c^q) \\
& \quad b^q - a^q = (b-a) \prod_{\text{odd primes } p \mid \mathcal{c} \neq q} p^{\alpha_p(p)} \\
& \quad = \prod_{r \text{ odd primes } r \neq q} r^{\alpha_r(r)} \cdot \prod_{p \text{ odd primes } \mathcal{c} \neq q} p^{\lambda_q(p) + \alpha_q(p)}
\end{align*}
\]

The set of primes \(r \) constitute the primefactors of \((b-a)\) (excluding \(q \)), and this set is dis-junct to the set of primes \(p \) which are furtherly multiplied to \((b-a)\) to form the final value \(f_{b,a}(q) \). So it is required, that the exponents \(\alpha_r \) resp \(\alpha_p \) of all this primefactors are equal
to q or to a multiple of q. If also q is factor of $(b-a)$ it must thus have exponent $q-1$. It is possible to construct infinitely many such $(b-a)$, which then means simply a perfect power, say $b-a=D^q$ or $b-a=q^{q-1}D^q$, thus $b=a+D^q$ or $b=a+q^{q-1}D^q$ with some (though not completely) arbitrary a and D.

But the problem occurs still with the set of primefactors p, (which necessarily is present since $b^q-a^q>(b-a)$), because all involved primefactors must be of the generalized Wieferich type of order q (it must always be $\alpha_p(b,a)=q$); and while Wieferich types with $\alpha_p(a,b)=2$ are already rare, that with $\alpha_p(a,b)=q>2$ are even more rare\(^{11,12,13}\).

\(^{11}\) What means "rare"? In "Fermatquotients" I studied the construction of $(b-a)$ such that for a given prime p and a nontrivial pair (b,a) the value $\alpha_p(b,a)$ is arbitrarily greater than 1. The term "rare" means according to that text roughly, that in a set of n solutions (b,a) with fixed a and consecutively increasing b providing $\alpha_p(b,a)=2$, the number n_q of solutions for $\alpha_p(b,a)=q$ is of order $n^{\ln q}$

\(^{13}\) There is a rather similar sounding property, found by Arthur Wieferich, who proved that the FLT-equation could have only a solution if q is a Wieferich prime. But there is the exponent in the focus, where I discuss the primefactors of the full expression.