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Abstract:
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1 Introduction and basic definitions/notations

1.1 Intro

The considerations in the current article were initially triggered by the study of the func-
tions

(1.1.1) foaln) =b"—a"
Gbe(n) =b"+a"

modulo some prime p, and subsequently more generally by their complete prime-
factorizations. For instance in terms of the question:

given a pair of "bases" a,b find the relation of p and n such that
b"—a"=0 (mod p)  //for some prime p
or more explicite

given a pair of "bases" a,b find an expression for e, depending on n in

b —a" = Hpkek

p€Primes

Looking at modularity with respect to some primes or to the complete primefactoriza-
tion where n is a variable parameter, we may call these an exponential diophantine
problem.

Similar other questions in that area of exponential diophantine problems are sometimes
successfully formulated in terms of the order of the multiplicative cyclic subgroup
modulo a prime p’. So | got up with the idea to develop a common notational frame-
work for a unified formulation of such problems: if some problem could be answered
looking at it modulo the prime p; and another problem modulo p, and p;, then why not
use a formalism which principally refers to all primes and can then be focused appropri-
ately according to a current problem?

The following treatize is only concerned with the presentation of such a formalism and
just a couple of rather immediate implications. | don't attempt to find some special new
solutions. Rather I'm looking at some old classic problems with that "new glasses" de-
veloped here — and | find some very nice appeal in that unified view.

In general in the following I'll look at the function f, ;(n) rather than at the more general
one f,4(n) and leave that generalization to further progress. One of the specific differ-
ences is: in f, 1(n) the primefactor 2 plays a special role (because f,;(n) and g, (n) with
gcd(b,2)=1 are both divisible by 2; a related effect must be taken into account for f, 4(n)
but I've not yet looked at this more than cursory.

Two ad hoc introduced notations are useful for problems of wider area too: the idea of
the Iverson-brackets’, which means to introduce some boolean if-condition as numerical
parameter into an algebraic formula. | focus here on the "if m divides n" — condition and
"highest power of m which divides n"-value giving them symbols which allow algebraic
manipulations in equations and formulae.

! see http://en.wikipedia.org/wiki/Multiplicative_group of integers modulo n

? see http://en.wikipedia.org/wiki/Iverson_bracket
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In the following | use also shorter forms for f() and g() because in most places | assume
some constant parameters a,b so —where possible — | denote this as follows:

In general:

fpuln) =b"—a" and g, ,(n) =b" +a"
If the parameter a=1 then | abbreviate

fp(n) =b"~1 and g,(n) = b"+1
and if also b=2 then | omit that parameter too:

f(n) means  f, ;(n) so fin)=2"-1
g(n) means 92,1(’7) so gn)=2"+1

By default | denote integers using the letters n or m or x, primes using p,q,r,u . The let-
ters b and a are mostly used for the pair of possible bases usually having gcd(a,b)=1, and
are meant as constant parameters in a certain formula, while n, p etc are meant as vari-
able. The symbol e is never meant as euler's constant but refers to a variable in the ex-
ponent as well as the symbol w which alludes to the exponent of a wieferich (or general-
ized wieferich) prime.

Euler's totient functions is denoted by ¢(n) ; | also introduce the greek letters a ("al-
pha"), B ("beta") and A ("lambda") for three essential functions (see 2.1 and 2.2)
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1.2 Notation for "divides"

In the following the usual notation m|n for "m divides n" seems not well suited for use
in the formulae under algebraic manipulations.’ The main problem is to use the evalua-
tion of that "m divides n"-condition as part of a concise algebraic formula. This was in
principle introduced by K. E. Iverson in the programming language APL and was more
popularized by D. Knuth using brackets around a boolean expression. This was in the
same way meant to convert the boolean "false" "true" into arithmtical 0 and 1, usable
for instance as multiplicative factor.

So | introduce such a notation which also resembles the more "natural" use for the "di-
vides" here and can be included in an algebraic formula, however still limited.

(1.2.1)
"Divisor-expression":
for n,m integer, m #0

[n:m]=1 if mdivides n,

[n:m] =0 if mdoes not divide n

In long formulae | prefer also a second notation which reminds visually stronger to
the aspect of division; | use a modification of the notation of a fraction:

n

122 [n:m]=~

m

We can do a bit of algebra with that operation:

I-—~ negation
Ll boolean AND
P q

n n
I-(1-~)-(1-~) booleanOR
p q
but note, that usual operations as addition and multiplication of such "divides"-
expressions in the manner of adapting sums or products of fractions do not make sense
in general. However, at least we can use the arithmetical cancellation/expansion of nu-
merator and denominator:

prq 14
~=~ cancellation

rq r

This is not fully compatible with gcd(n,m). Assume three different primes p,q,r:

n=r-q m=p-q
then [n:m]=0
but ged(n,m) = q

Remark: later I'll generalize that Iverson-bracket to contain also logical expressions like
[b > a] ; this shall occur in sections to be written in the next version.

* For me that symbol is also unnatural, since I'm used to the divisor on the right side of the division-symbol,
or even better, as denominator in a fraction, and I'd like to have this here too.
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1.3 Notation for "valuation” (finding the exponent of a primefactor)

Consider the canonical primefactorization of a natural number n:

em

n=p;€-p;%p; ... pm
Then the term "valuation"* means the exponent e, of p,, such that

e« = valuation(n,py)

For shortness of notation | misuse the (curly) braces for that notation:

(1.3.1) "valuation":
X
{np}=e €= n=xp® where ~ =0
P

or

{x-p% p}=e when ~;~ =0

This can also be expressed differently as:

inf

{n,p} =[n:p ] + [n:p? ]+ [n:p? ] + =z ~

k=17

Example 1:

The obvious and natural application of that "valuation-braces" is in the canonical prime-

factorization of a natural number n:

(1.3.2) n= H P{n'p}

PE primes

Example 2:

The Fermat-/Euler-theorem, expressed in this notation looks for a base b, a prime p and

gcd(b,p)=1 resp. gcd(b,n)=1 (where n is a positive integer)

(Fermat:) {bP1-1,p}>1

(Euler:) {b*M—-1 n}>1

(Euler:) (b1, pp = (p?PP 1, p} > k
Example 3:

A more sophisticated form, reflecting the required divisibility of an exponent n by ¢(p)

and possible higher powers of p for some examples:

{b"-1, p} =0 if [n:e@(p)=0
21+{n,p} if [n:@(p)] =1

* as —for instance .- in the programming language for Pari/GP
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If we express the if as algebraic expression using the arithmetical conversion of the "di-
vides"-condition (the analogon to the Iverson-bracket) we can write for the power to

which some prime p occurs in f,(n) :

. (0! + {n, p}) where a¢2 1 and is explained below

{b"-1, p} = ~
o(p)

Example for some prime p:

use p=5, then @(p)=4

(1+{n,5})

FNE

(215} = = -(1+(n.p})=

)
which means:

if n is not divisible by ¢(5)=4, then the valuation of p (=5) in this expression is
zero because 0+(... ) is always zero

if n is divisible by ¢(5)=4 the valuation of p in that expression is 1-(1+{n,5}),
which is at least 1 and if powers of 5 are also factors of n, then the expo-

nent adds to that value.

Examples for some n:

(2" -1,5} = ; (1+{7,5})=0-(...)=0
(2*-1,5} = ;.(1+{4,5})=1.(1+0) =1

(2% -1,5) = ; (1+{12,5})=1-(1+0)=1

(2% -1,5} = - (1+{20,5}))=1-(1+D) =2

4
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2 Fermat/Euler and two residue-orientated functions

2.1 Fermat's little theorem and Euler's generalization

For the study of exponential diophantine problems Fermat's little theorem and Euler's
generalization are the most elementary facts.

They imply cyclicitiness of divisibility of f, ,(n) and g, ,(n) by some prime p with respect
to consecutive n and they allow to reduce a problem, for instance divisibility by some
number, to a much smaller finite set of conditions. If we consider f(n) = f, ;(n) for some n
and its divisibility by some prime, say p=3, 50r 7:

n: e 1 2 3 4 5 6 7 8 9 180
£(n) @ 1 3 7 15 31 63 127 255 511 1023
[f(n):3] 1 e 1 e 1 e 1 e 1 o 1
[f(n):5] i1 e e e 1 e© 6 o 1 o6 o
1 e e 1 e e 1 e e 1 o

[£(n):7]

then we observe periodicity with n in that divisibilities and looking at the values of the
modular residues (not shown here) we may talk of "cyclicity".

The little theorem of Fermat is originally

if pis a prime and gcd(b,p)=1 then
(2.1.1) bP=b (modp)
and can be translated to some other form:

if pis a prime and gcd(b,p)=1 then

(2.1.2) bP1=1 (modp)
bP1-1=0 (modp)
bPl-1=xp // where x € IN may contain the factor p as well
[bP1-1:p]=1
bP1-1,p}>1

and the generalization to

cyclicitiness : If p is a prime then from b?1 =1 (mod p) we have also
b¥P-1) = (pp-1)k = 1K = 1 (mod p)

and with n=m + k*(p-1) we have for every integer k>0
b" = Mk (p-1) = pmpk*(p-1) = pm.7 = pm = pn (mod p-1) (mod p)

So the cycles with respect to varying n are modulo (p-1) and the most interesting case is
here when m=0 so

pk(p-1) =1 (mod p)
pkr-1) _ 1 =0 (mod p)
[b¥PU-1:p] =1

If we denote the exponent with n and let it vary, then this means: "whenever n is divisi-
ble by (p-1), the expression is divisible by p" and we can express this using the new nota-
tion for divisibility

n

[6"-1:p]= ~

p-1
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L. Euler generalized this with his totient-function (¢(m)) to composite moduli m
(2.1.3) b¥(m —-1=0 (mod m) // gcd(b,m)=1

Because ¢@(m) = m — 1 if m is prime, this is indeed a generalization of the Fermat-
theorem. With the same argument as above we can also write

214 b?M*—1=0(modm) or (67 —1:m] =1

or focusing a varying n in the exponent:

n
[6"—1:m]= ~
o(m)
However, in the following we do not need that extension to composite moduli since
we're going to consider only the explicite prime-factorizations of our expression and
thus we need the moduli of primes only. Only we'll refer to the ¢-function for more
generality and/or completeness.

2.2 Alittle bit beyond the Fermat/Euler-theorem

The Fermat/Euler-theorem is very powerful, but in one sense it is too imprecise for our
goal here where we want to establish a notation in equation-form and exact parameters
for algebraic manipulation, not in qualitative conditions ("is cyclic", "divides") only. We'll
need (at least) three improvements for that theorems.

a)  The cycle length. The value ¢(p) as expression of the cycle-length of f,, ,(n) (mod p)

with respect to consecutive n is only an upper-bound for that cycle-length. Usu-
ally the cycle-length is much smaller (while it is always a divisor of ¢(p))

Thus below we'll introduce a (cycle-) length-function A( ) "lambda" . The value of
this function is always a divisor of ¢(p) (including 1 or ¢(p) ) and is depending on
the pair of bases in f, ,(n). We'll write it with p as index and (optional) (b,a) as pa-
rameters. So we will have

[bk./lp(b,l) “1:pl=1

or
n

[b"—1:p]l= ~

A, (b.1)
which is the same.
b)  The Fermat/Euler-theorem states f,(¢(p)) = 0 (mod p), but this is only a lower
bound for the modulus p. Sometimes we have f,(¢(p)) = 0 (mod p* ) where k>1 (a
problem studied under the notion of "fermat-quotient"”, see chap 4).

Thus below we'll introduce a first-exponent-function a() ("alpha") to be able to re-
fer to the exact value. (Again, we'll write it with p as index and (optional) (b,a) as
parameters) So we will have
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A, (b1) }_
{b ' -1, pPJ= ap (b’l) Note: without change of properties, we can
replace the reference to @(p) by that to

or Au(b,a), which we do here

n

b -1: )

For the correct handling of the primefactor 2, which occurs if b is odd, we must
also look at the exponent to which it occurs in gy(¢(2)) and call this 8,() ("beta") :

{p" +12}=B,001)

Note that also A, = 1 for all odd b, and moreover a,+f3, > 2

A, (5,1

c) The Euler-theorem states, if applied to powers of primes,

fel@(p))  =0(mod p)

fol@(p)p¥) =0 (mod p***)
But similar to b) without further specification that increment of 1 in the exponent
of the modulus p is only a lower bound for the increment of k. We want a refer-
ence to an exact value, especially we want to be able to do arithmetic in k on both

sides of our equations. So we have to prove that increments of exponents for
primefactors p in the lhs are correctly reflected on the rhs by the same increment.

So we will have for odd primefactors p:

(""" =1, py=a, b (" -1.pl=a,
short notation:

(BT 1 py=a (bl +k " ~1pl=a, +k
and for p=2 this needs completion using the function f8,(b,1)

In the following sections | introduce the needed functions A ("lambda") and « ("alpha")
and f8 ("beta") and a proof that the increment of exponents is indeed parallel.
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2.3 Notation for cycle-length (Lambda-or A() function)

If gcd(b,p) = 1, then the Fermat-/Euler-theorem describes the cyclicitiness of f,(n) (mod
p) as
(2.3.1)

fo(n) = fo(n (mod @(p)))  (mod p)

ifn=r+k-@p)
fo(n) =flr) (mod p)

But while this is true, the cycle-length can also be smaller; precisely it can equal a divisor
of @(p). This is also known as "order of the multiplicative subgroup modulo p".

Example. If b=2 and p=7 we ask for f,,(n) or 2"-1 (mod 7) .Since ¢(7) = 6 we have
f(6) =26-1 =0 (mod7)

which is obviously true. But already we have
f(3) =23-1 =0 (mod7)

and thus the cycle-length is 3 (which is also a divisor of 6).

This is called the "order" of the cyclic multiplicative subgroup; as function we find often
th symbol ord(n) To have a single symbol | introduce the function A:

assuming gcd(b,p)=1

Ap(b,a): select the smallest m>0 such that [b™ —a™ :p]=1
short forms A(b)  =A,(b,1)
A, =2,(2,1)
/\p = /\p(b,a) if a certain (b,a) is understood in a formula

the complete parenthese may be omitted

/\p(b,a ) =m if m>0
= <infinity> if there is no m (because gcd(b,p)>1)

| also use the notation A, or even only A in a context, where the base b (or the pair b and
a) is a constant parameter and the readability of the formula shall be improved.

Unfortunately the A- definition interferes with the well known Carmichael-function of the same
name, but | used it here because of its clarity (and also for personal historical reasons)

(Carmichael-function):The value of the smallest m, where, for all a with gcd(a,n)=1

™ -1=0(mod n)

is known as the Carmichael A( )-function for the number n. In the example, A.grmichael(7) is NOt 3,
but 6 because there is another base, a=3, where the smallest m satisfying the divisibility is 6:

6

3°—-1=0(mod7)

so
(carmichael-lambda):
Acarmichaell 7) = 6

For the current discussion this function is too complex; we want to discuss properties of one sin-
gle base b; (or a pair of bases in f;, ,(n)) so | introduce my own variant which denotes the smallest
index m for a specific base b which is under discussion.



CyclicSubgroups Pg-11/31- 14.10.2016

A brief aside: Primitive root

K.F. Gauss introduced the concept of a "primitive root" for a prime p. In the notion that we use here
we fix a prime p, vary the base b in f,(n) and check the length-function for p resp that base b. If /\p(b,l)

= p-1, then we say, that "b is a primitive root" of p.
In another view we can characterize a primitve root b of p as "b is a p-1'th root of 1 (mod p)" (and not a
smaller one). A table of r'th roots of 1 (mod p), for instance p=13:

bo b b2 b3 b4 bs beé b7 bé b9 p1o b1t b12
A e e At S e e o

1 1 1

1 2 4 8 3 6 12 11 9 5 10 7 1
1 3 9 1

1 4 3 12 9 10 1

1 5 12 8 1

1 6 100 8 9 2 12 7 3 5 4 11 1
1 7 10 5 9 11 12 6 3 8 4 2 1
1 8 12 5 1

1 9 3 1

1 10 9 12 3 4 1

111 4 5 3 7 12 2 9 8 10 6 1
% 12 1

0 0

We find a simple scheme here:

all roots "new roots"
1'st root (1) (@B)
2'nd root (1,12) (12)
3'rd root (1,3,9) 3,9
4'th root (1,12,5,8) (5,8)
6'th root (1,12,3,9,4,10) (4,10)
12'th root (1,12,3,9,5,8,4,10,2,6,7,11) 2,6,7,11)

Here the bases b= (2,6,7,11) are called "primitive roots": their consecutive powers "generate" the
whole set of possible residues (mod p).



CyclicSubgroups Pg -12/31-

14.10.2016

2.4 Notation for "exponent at first occurrence" ( a() (="alpha")/B()-function)

Another notation is that of the alpha-function af(). From a short inspection of the A-
function it may appear, that the exponent of the prime at its first occurrence:

f2,1(3): 23—150(m0d 7)
or
2-1=x-71 (and gcd(x,7)=1)
or written in the new notation
(24.3) {f(3),7}={2>-1,7}={2"-1,7}=1

is always 1 as in the given example the exponent of the prime p=7, as might have been
found with a couple of further examples. But this is not always the case; for instance in

fsu(5)=3"—-1=3MB1_1=2.1712
we find
{fs1(A1a(3,1)), 11} ={3M1—1,11}=2

and that the primefactor p=11 occurs already to the second power at its first occurence.

To be able to refer to this property in an algebraic formula we introduce the «f)-
function, which just expresses that exponent:

(2.4.2)

0,(6,0) = { fool Ay(b,)), p} = b lb)— (b p)

a,(b,a):=0 if ged(b,p)>1 or A,(b,a) = <infinity>

The a-function for primes p can alternatively be expressed using ¢(p) instead of A,, or
differently said:

{f((pp) 7 p} = {f(/\p) ’ P}

because an increase of the valuation of p in f(A,) can only occur on p'th multiples of A,,
but since ¢, < p cannot be such a multiple of A, it contains p to the same power.

As with the A-function I'll omit the parameters for the base if obvious from context and
if it saves notation. So for a given base b, for a prime p you'll find the reduced notation

(24.3) ap = { foalAo), p} ={b—a", p}

For the handling of the primefactor p=2 when the difference of the bases b-a is even
which occurs also in our standard cases when a=1 and b is odd we need also the value of
9h,4(As) introducing the function f()

(2.4.4) jgp = {gb,a(Ap) ’ P} = {bAp + aAp/ p}

Because A,(b,a) is always 1 in that cases (in the other cases the primefactor 2 does not
occur at all) this looks like

(2.4.5) a2={fodl1),2} ={b-a,2}
B2=1{9b41),2} ={b+a,?2}

and we have also

(2.4.6) either a=1andf3,>1
or a,>landf,=1
and thus

(2.4.7) a,+8,>2
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A brief aside: Wieferich-primes:

Note, that the term "Wieferich-primes" refers to the function «,, in a special case. The definition

p
for a wieferich prime is, translated to the current terminology,

i a prime p is called "wieferich-prime" if
{27 1-1,p}> 1
For the current purposes it is useful to extend this:

(ii)) a prime p is called "generalized wieferich-prime of order k" if
{bl - all p} =0
and {bP1-aPl pi=k>1

Again we can replace the exponent p-1 or ¢, by A, and write

(iii)) a prime p is called "generalized wieferich-prime of order k"
if {fool1), p}={b'=a’, p}=0
and {foulho ), p}={ b=, p }= a, and a,>1
or shorter: a prime p is called a "generalized wieferich prime of order k"
ifA,>1 and a,=k>1

(an observation:

If A, =q is prime, then from {f(q)/f(1) ,p} >0 follows,
that p =1 + k- g and f(qg) has the form

fla) = (1+2kq + k2q?)-(1+k-q)°-x
(to be continued))
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2.5 Increasing powers of p when increasing the exponent n

The Fermat/Euler-theorem is quite basic and quite helpful for the numbertheoretic
analysis. However, for algebraic manipulations that theorem has the drawback, that it
gives only a lower bound for the power of a primefactor in an expression b" — 1.

I'll show the problem here: the ¢@-formula for prime p can be extended this way:

beP) — 1 =0 (mod p)
peP) — 1 =0 (mod p)
pe)Pt _ g =0 (modp*) or =0 (mod p-p*?)

As we've seen in the paragraph on the "alpha"-function this is only a lower bound for
the k on the rhs and is solved by simply introducing the alpha-function as notational ref-
erence to this property. So for some parameters

(2.5.1)
b®P —1 =0 (mod p*)

with a, >1 as discussed above. But moreover, the Fermat/Eulertheorem does not state
explicitely, that if in

b?PIP —1 =0 (mod p**k)

kis increased in the |hs in steps by 1, the exponent of p on the rhs increases simultane-
ously in steps by 1, and it is not excluded, that possibly there is a j>0 occuring where
then

b‘p(p)'pk —-1=0 (mod pap +k +/)

at some value for k. These two shortcomings are solved here.

First, we modify the Euler-formula for primes p in the following way:

{bqo(p) —1,p}= a,

because —as stated above— the exponent of p at its first occurrence may be greater than 1.

Second, it must be shown, that indeed for a certain integer k > 0 exactly

(2.5.2) {b*"(p)‘pk —Lpl=a,tk // or written differently:
pelP)P" 7 = x portk // ged(xp)=1
o)’ =14 poetk

The general expression for the exponent of a primefactor p for odd p is then

(25.3) {b"-1,p}=[n:A)] " (a,+{n,p}) for odd p, gcd(b,p)=1
This shall be used (for odd primefactors) on the next page.

The primefactor p=2 needs again a special handling. We assume f,,(n) and g, .(n) with
a=1 and b odd. (if b is even, then 2 does not occur at all as primefactor). We have (with-
out given proof)

(2.5.4) {b-1,2} =a,

b —12)=atk+(By-1) for k>0
and more compact
(255 b?~1,2}=a,+ [k>0] (B, -1 +k)
256 (b"=1,2}=a,+{n2} + [n:2] (f,-1)

Or, in one formula for all primes p:

257 {b"=1,p}=[n:A,]-(a,+{np}) + [p=2][n:p] (B,-1)
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The proof (for odd primefactors) uses induction.

Assume, that this condition is true for some k. Then by induction we get for k+1

prp Pt (b(ﬂ(p)-pk )” _ (1 L pa,,+k)F

The binomial expansion of the rhs is of course

1+p'x'pap+k +([27).(x'pap+k)2+[§).(x'pap+k)3+”‘+p.(x'pap+k)[’—1 +(x.pap+k)l’

and we can rewrite and factor out:
14 14
o(pypt 4 _ L pZetk Q AR Q L%tk Ltk -2 p-1| . a,+k -2
T L T R e
ere, because p is prime the binomial-coefficients are all divisible by p an e relevant aspect occurs

H b is prime the bi ial fficient Il divisible b d the rel t t
now in the shortened representation

b7 —1=x- p™ (14 p-2)

in that the rhs contains the factor p to the power a,+ k+1 but not higher.

Since for the induction-start, k=0, we can use just the defininition a, such that is
(6P~ 1pj=a,  (21)

we finally get from this by induction

[ pPP)P* _ 1 o1 ={pPP)P° _ 1 pr ik
={b‘p(p)—1,p}+k
=aytk

as desired.

(End of proof)

Then we have always the exact expression for the exponent of a primefactor p in f(n,b)
ol
wy 9P —1,p} =aytk
{pXePIP* _ 1 p) =a,+k // for ged(x,p)=1

where the reference to the ¢-function can also be replaced by the reference to the A-function

w) %P~ 1,p} =a,tk // for gcd(x,p)=1

and the general representation in terms of decomposition of a given n:

wp " =1p}  =[n:A ] (apt{np})
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3 Applications
3.1 Simple examples of primefactor-decomposition

Example: any natural number n

The canonical primefactor-representation of a natural number n can now be given as

(3.1.1) n= H P{n'p}

PE primes

because the valuation-braces "extract" just the exponent of a so-referred prime in that
canonical representation.

Example: denominator of Bernoulli-numbers/von Staudt-Clausen theorem

The denominators of the Bernoulli-numbers in their most cancelled form can be de-
scribed by:

n n

(3.1.2) denominator(B,) = 2* * H P

peodd
primes

according to the von Staudt/Clausen-theorem very similar to the n-representation (see
for instance wikipedia®).

3.2 The canonical primefactor-decomposition of f,;(n) and g (n)

The previous can be used for the description of the canonical primefactor-
decomposition of f, ,(n) and g, 4(n), because the same is valid for all primefactors. For
the primefactor 2 there is one more extension to be considered, so we exclude it here
from the composition-scheme (giving it the formal exponent m, which can be zero) and
write for f}, 1(n) :

3 Z(_/32—1 {n,Z}) '}1 ((Zp+{n,p})
pr—1 =" HPA" forodd b
pe'odd
primes
(3.2.1)
= (@, +{n.p})
H p’ forevenb
peodd

primes

(redundant base-parameter b has been omitted and shorter indexed notation
for A and o was used)

For example, for base b=2 we have

l+n3}) f(1+{n,5}) 2(1+{n,7}) Z(l-%—{nll 2+{n109'5})

2" —1=3: 5¢ 7° 11° 1093

where | show the first few primes as factors and also the wieferich-prime p=1093,
which, if n is divisible by 364 (or 1092), occurs even to the 2 power in the value of 2"-1

> https://de.wikipedia.org/wiki/Bernoulli-Zahl
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Example: representation of g,(n) derived from f,(n)
Since
b"+1=(b?"-1)/(b"-1)

we can describe the composition of g,(n) immediately. We leave the powers of 2 inde-
terminate, give its exponent just the name m; and have:

Hp

peodd
(322 b'+1 =2m. 2

I1r”

peodd
primes

a +{2n, p}

a,ﬂr{n )

First we can put numerator and denominator together, since we have the same list of
primefactors:

(a1,+{2n p}% (0!1)+{n,p})
(3.2.3) b +1 _2m1 Hp

peodd
primes

Next; since this is a product of odd primes only, the expression {2n,p} and {n,p} are
equal; the valuation of an odd prime p in n is the same as in 2n, and we can compress
the above expression:

2n n

324 b"H+1 =2". Hp[[p_gjj(“ﬁ{n,p})

peodd
primes

Here the parenthese of the "divides" in the exponent is of special interest. Since if nis a
multiple of A, then is also 2n , the whole parenthese evaluates to zero, and the prime-
factor in question cannot occur in b"+1.

This can also be seen because in

(b"+1)=2+(b"-1)
gu(n) = 2+ fy(n)

the fy(n) and g,(n)-functions of the same parameters could only have 2 as common fac-
tor.

Now which primes can occur in b"+1? Obviously only that primes, whose cycle-lengthes
A, for the current base do not divide n but divide 2-n, for instance those whose cycle-
length is even when n is odd, and generally, whose cyclelength has one more power of 2
than n has (besides the other divisibility conditions).

For example, g(n)=2"+1 has the composition:

2/1 2n n 2n n 2n n
2 4] = 3 )(l+{n 3})5(1—Z)(l+{n,5})7(;—;)(1+{n,7})1 1(]~0—1~0)(1+{n A13) 1093 o )(2+{n, 1093}) N
Here we can see that primefactors vanish in case their A-value is odd, since
[2n:A,]=[n:A,]ifA,is odd
and the whole exponent vanishes then.

For the primefactor 3 we observe, that the "divides"-term in the exponent is just
1-[n: 2],
that means, it vanishes at even n and occurs at all odd n.

For the other primefactors we observe, that they occur first when n is half the cycle-
length and then cyclically with their cycle-period, for example p=11 occurs at
n=5, 15, 25, ....
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3.3 If b™ - 38" = d, are there more solutions b™* - 3™ = d?

3.3.1 Solutions of 3"-2M=1 or 2"-3M=1? (solved in the 13" century)

We rearrange the equations to have f, ;(n)-expressions:

1)3"-1=2"m
2)2"-1=3"

We have "trivial solutions" for case 1)
n=1 3-1=2 ->m=1
n=2 9-1=2° ->m=3

and for case 2)
n=2 4-1=3 -->m=1

and search for more solutions. We always formulate the primefactor-compositions of
the lhs in terms of the primefactors on the rhs.

Case 1): we consider the general relation:
(3" =12} =@, +~(B,~1+(n2})
=1+~Q-1+(n2})

:1+;(1+{n,2})

Because we have a distinction between even and odd n we separate this in two expres-
sions

2n
a)  {3"-12}  =l+-01+{2n2})
=3+{n,2}
b) (3" -1,2}) =1
From that descriptions we can reformulate a) and b) to meet our question:

a) 32n _1 — 23+{n,2}

9" —1=8.2"%

9"-1 _

8

Because the rhs 2"% <= n for all n, but the |hs is always greater than n
when n>1, the expression shows that the only solution is n=1 or said dif-
ferently (and with more generality): "we have a contradiction if n be-
comes greater than some small value" (the "trivial" solutions).

b) 3" -1,2}=1

g2 (<n)

Here we see, that the primefactor 2 always occurs only to the first power,
so for any n>0 we need additional primefactors to multiply up to the
value of 32™*1-1 and thus the formula is correct only for n=0.

a) and b) together give us the two only possible solutions 3% - 1 = 23 and 3 - 1=2?
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Now for the case 2)
e;(n)={2"-13} = ;(1+ {n,3})

2" —1=3%"

Again we have, that 3¢(") <= n for all n, and only if n is a perfect power of 3 (which is re-
quired here) then we have equality. Because the |hs of the equation is exponential in n
we'll have at most one solution and this is n=1.

Thus the only possible solution is (the trivial one) 21 - 1 = 39

This analysis of the two possible cases disproves the possibility of neighboured perfect
powers of 2 and 3 beyond "the trivial" one 32-23=1

3.3.2 Example: 2° - 3° = 5. Are there more solutions 2°*7 - 30 = 52
This is a concrete example for a more general problem. We do the following ansatz
25 _33 — 13;25+a _33+b

92

33+ _ 33 ;25+a _95
3" -1729—1
3
and look at the conditions which this imposes on the unknown exponents b and a.
For the Ihs, we know that
{3"-1,2}=1+[n:2](1+{n,2})
and for this expression to equal 5 we must have that

1+[b:2](1+{b,2}))=5 //sob mustbe even
{b,2}=3

and b must -with any odd x- have the form

b=23x  andwe get
{32°x-1,2}=5

For the rhs, we know that
{2" -1, 3}= [n:2](1 +{n,3})
and for the rhs in this equation to equal 3 we must have that

3=[a:2](1 +{a,3}) // so a must be even
2=1{a,3} // so a must be divisible by 3°

and a must -with any y not divisible by 3- have the form

a=2-3.y andwe get

{223°v.1,3}=3
Our basic ansatz looks now like:

323)( _1 ? 22.32)’ _1

25 33

The constant exponents in the numerators in each side make sure, that the numerators
have the denominators exactly as factors, and no less or more of the primefactors in the
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denominators are allowed to occur, so any involved x may not contain the primefactor
2, and any involved y may not contain the primefactor 3.

However, if x,y>0 (which we assume for a second solution) each side contains further
primefactors, and in the case of existence of a solution that primefactors must be the
same and their exponents must be equal.

The key of the following is to prove, that this is impossible; and the most simple case is,
when either in the exponent in the lhs are more primefactors 2 or in that of the rhs are
more primefactors 3 - which occurs if either x has the primefactor 2 as well as if y the
primefactor 3.

We assume first, that x=y=1 and look at the primefactors of the lhs. We get

lhs = (2°-) 5-41
rhs = (33:) 7-19-73

(the primefactors in parentheses are cancelled by the denominators)

We see, that the lhs and rhs are mutually missing all the primefactors of the other side,
so x as well as y must be adapted such that both sides have the same primefactors.

We have

{2"-1, 5}=[n: 4] (1+{n,5})
{2"-1, 41} =[n:20] (1+{n,41})

s0 2-3%-y must be divisible by the Icm(2,9,4,20)=180=2-3%-2-5 so y=10-y; with some y; not
divisible by 3.

For the other side we have

{3"-1, 7}=[n: 6] (1+{n,7})
{3"-1, 19} =[n:18] (1+{n,19})
{3"-1, 73}=[n:12] (1+{n,73})

5o 23-x must be divisible by the Icm(8,6,18,12)=72 so x=9-x;
Setting x;= y; = 1 we get new sets of primefactors. We get

lhs = (2°-) 5-41 -7-19-73  -13-37-757-... (one more)

rhs =(33:) 7.19-73  -5-41  -5-11-13-31-37-61-109- 151- 181- 331- 631- ... (some more)

(the primefactors in parentheses are cancelled by the denominators)

If we now adapt the list of primefactors again, we get in the rhs the primefactor 757. But
Ass/(2,1)= 756 = 22-33-7 and this means, on the rhs we get {22325 37¥: _ 1 3} = 4 which
means that the rhs becomes divisible by 3% instead of 33, and after cancelling by the de-
nominator we get thus one remaining primefactor 3 in the rhs.

The Ihs cannot have a primefactor 3, so we have a contradiction: the |hs and rhs cannot
be equal and thus we cannot have a second solution for the problem in question.

This method can simply be adapted for other configurations; practically in a software
implementation we need one initializing-step which sets the valuation-formulae for
some sufficient subset of first primes for the lhs and for the rhs, and then, on the k'th it-
eration the required x, and y, must be determined, then for each side the set of in-
cluded primefactors, then that two sets must be joined (using the highest exponent per
primefactor) and new x,.; and y,,; must be computed until the contradiction occurs.
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3.4 Are there common factors of "iterated" Fermat-numbers 2A2A,.. + 1?

. . . . n
One occasionally asked question can immediately be answered: can b"+1 and b?'+1 have
common primefactors?

If b =2 and n=2 or any powertower of 2 then this is the question of common factors of it-
erated fermat numbers where a "Fermat number" F, is defined as

F,=22"+1
We write the primefactor-decompositions of both formulae
ol an( { o
[~—~ a,+p".p) [~—~j(a np})
n Ap ) pruLP
341 b +1:Hp r b”+1:le” *r
peodd peodd
primes primes

We look at the parenthese in the exponent of the first product:

we have, that (for a current prime p) A, must divide a perfect power of 2 and
must thus itself be a perfect power of 2. To provide a value of 1 for the parenthese, it
must exactly equal 2"*! otherwise the whole parenthese is zero and the primefactor
does not occur in the |hs.

But if now for some p its "length" is A, =2"*1 then it cannot at the same time be a divisor

of 2n or even of n in the exponent of the second product since 2" > 2:n > n for n>0; so
any prime p can only occur in the first or in the second expression exclusively.

We did not make an assumption about the height of the powertower n=k, 2k 22k,... , SO
this can easily be generalized by induction. Note also, that we did not make use of the
restriction for the base b=2, so this is a property not only of "iterated" fermat-numbers
(defined for base b=2)
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3.5 The "chinese"-primality test

The so called "chinese"-primality test for a number n is to calculate, using f,;(n) with
base 2:

(3.5.1) y=2"1—1 (modn)

If y<>0, then we know that n is composite. Unfortunately the converse is not true. For
some n we get y=0 although n is not prime. Such n are called "fermat pseudo-primes"
(to base 2). This imperfect prime-detection property extends to other bases coprime to
n as well. However, different bases b give sometimes different results and so they may
correct each other, and only if we check all bases b<n we get a decisive result: if all re-
sults are 0 then n is prime.

Such pseudoprimality of n consists of two or more prime-factors whose cycle-lenghtes
agree to divide n-1. Let n = p-g then, being fermat-pseudoprime, 2"1-1 must contain
those factors (among others, which are collected in the indeterminate x)

pg-1 rg-1

~ (@, +{pa-1.p}) - (@, +{pa-1.4})

(3.5.2) y,=2""=1=p" q" X
which can directly be reduced (since {pg-1,p}=0 and {pg-1,q}=0) to

~ a ~

-1 1 P 7 q
(3.5.3) y,=2""~-1=p™" q" x

Remember that each prime and its length-function are related by p = k-A,+1 (and then
also that g =j- A, +1 ) - with some positive integers k,j - , then the "divides"-expression in
the exponent n-1 = pg-1 at primefactor p is

[((kA, +1)(jAg+1)-1): A ] =[(kA, (jAg +1)+jAg) i A, ]

So p and g are contained in 2™ - 1if {jA, A, }>0 and {k A,, A, }>0, and this is specifically
given, if A, = A,

Let's use two primes p, g which have A being a multiple of 5, so p=11, having A,=10, and
=31, having A; =5. Then

340 340

" ~1_ ~1
(35a) 2PT1—1= 2107000 =110 3]s #x=11%31%x

and indeed {2"1-1,11}=1 and {2"1-1,31}=1 and thus {2"1-1,n}=1 does not detect, that n
is composite, so n is (fermat-) pseudoprime to base 2.

Actually n=11-31=341 is also the first fermat-pseudoprime to base 2

However, using base b=3 we get by different cycle-lengthes A

pg—1=11-31-1 =(10+1)(30+1)-1 =10-30 + 10 + 30 (= 340)

A1i(3,1)=5 ai4(3,1)=2
A31(3,1)=30 as(3,1)=1
340 340

y3 — 310*30+10+30 _ 1 — 1 1; 2313’61 — 1 12 % 310 % X

and y, does not contain the primefactor g, and thus { 3”1 — 1, n }=0; this time showing
that n is not prime.
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The fermat-primetest can be improved this way; however there are numbers n which
are pseudoprime to all bases b<n where also gcd(b,n)=1. Such numbers are called
"Carmichael-numbers"; the first one is n=561. For such numbers the actual primality-
certificate based on the fermat-primality test is as expensive as a dumb trial-division.

n=561 p=3 q=11r=17
base 2:
A3(2,1)= 2 oas3(2,1)=1
Aui(2,1) =10 o3(2,1)=1
Air(2,1)= 8 o1,(2,1)=1
Si()l 5.6“01 5501
fo1(561-1) = 2°% —1=32 11017 *x=3*11*%17%x
=0 (mod n)
=> pseudoprime
base 3:
f31(561-1) base 3 is not coprime with n
base 5
A3(5,1)= 2 as (5,1)=1
Au(5,1)= 5 o;14(5,1)=1
A7(5,1) =16 o;7(5,1)=1
560 560 560
560 ~1 ~1 ~1
f51(561-1)= 5" =1=32 11° 17" *x=3*11*17*x
=0 (mod n)
=> pseudoprime

and so on with the remaining bases smaller and coprime to n.

3.6 The Zsigmondy-theorem

(from wikipedia: Zsigmondy's theorem)

In number theory, Zsigmondy's theorem, named after Karl Zsigmondy, states that if a > b > 0 are co-
prime integers, then for any natural number n > 1 there is a prime number p (called a primitive
prime divisor) that divides b" - a" and does not divide bk - ok for any positive integer k < n, with the
following exceptions:

a=2,b=1,andn=6;or
a + b is a power of two, and n = 2.

This generalizes Bang's theorem, which states that if n>1 and n is not equal to 6, then 2"-1 has a

prime divisor not dividing any 2K-1 with k<n .

Similarly, b"+a" has at least one primitive prime divisor with the exception 23+13=9

This theorem expressed in the current notation is
Let p,q,r,s,t,e be primes

Then write the primefactorizations

(361) JbdlS)= Hea”+{s’8} Hpaﬁ{s’p}
.6. ,a

ed, =1 pid,=s

. a,+(1.9)
362 Joalt)= Hea Heel Hq !

ed,=1 q:A,=t



CyclicSubgroups Pg -24/31- 14.10.2016

Then if we look at f, 4(st) we shall not only have the product of the two single pro-
ducts but a new set of primefactors r whose length functionis A, = st :

(363 JodlSt)= Hea”+m’e} Hpa’ﬁm’p} Hq%ﬂn’q} Hr”"‘”””}

ed, =1 p:A,=s q:A,=t rid,=st

From the representation of f,,(n) in the proposed form of primefactorization it is obvi-
ous, that if some primes p, divide f,,(g), where g is also prime, then that same primes

divide composite n which contain g as factor.

364) [ balN) = fralq 1e1q zezq 3e3)
2 20 20
) H p‘l} H pﬁn H p‘ﬂ
peodd peodd peodd
primes primes primes

contains at least the same primefactors as
149293

= x* Hp D

peodd
primes

But empirically more is true: apparently the composite n does not only produce the
primefactors p, in f,.(n) according to its own primefactors g, but also additional prime-

factors p,,, which do not account to the factors of n.

This can also immediately be seen by that representation: there may exist some prime-
factors p,, which have a length-function equal to some partial product of the g-
primefactors.

949 919,93

q a5 a3 443
= * ~(...) ~(..) ~(...) ~ () ~ () ~ ()
o [Tp"" T P e P P P o

pe.odd pelodd pe.odd pe.odd pe.odd pel()dd
primes primes primes primes primes primes

This can also be seen, if we consider, that f, ,(n) with n consisting of two primefactors g
and r is divisible by the factors

b9 —q9" =(b-a) *x,
(b%)'—~(a%) ((b%) —(a%)) * x,
(b')*—(a")? ((b')=(a") )* x3
where also the latter two factors can be factorized:
b9 —q9" =(b-a) *x,
(b%)'—~(a%) (b—a) [((b9)—(a%))/ (b—a)] * x,
(b')*—(a") (b—a) [((b')~(a"))/ (b—a)] * x5

where the []-bracketed terms (not an Iverson-bracket here!) are coprime, because their
(prime) exponents are different. Because of this we can still proceed and even write

65 = (b)~(ad") = (b—a) [((b")~(a"))/ (b —a)] [((b9)~(a%))/ (b—a)] * X5

Actually, Zsigmondy has proved, that this holds generally with the exception of f,;(6)=63
which contains only factors which are already contained in f;;(3) and f, ;(2).
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3.7 Mersenne-numbers

For the case of (b,a)=(2,1) we call f;(n)=2"-1 a "mersenne-number" M, . In a more strict
usage it is required that n is in fact a prime g, which is also common. We use the strict
definition in this chapter, but shall use the non-strict definition in the chapter on "iter-
ated Mersenne numbers".

In the notation of cyclic-subgroup-functions this reads like:

’
~(a,+{q,p})
7y Mg=29-1 = H p” // q is prime

peodd
primes

More explicite,

2(1+g.3)_~(+(a.5)_~(1+(q.7).  ~(1+{g11 ~ (2+(g.1093)
54 3 10 .

). 1093%

where also the Wieferich-primefactor p=1093 is explicitely displayed for reminding the
reader of special cases.

The primefactor 2 cannot occur, so we need not consider its properties here.

Since mersenne-numbers in the strict sense are only defined for prime g, we see that
only primefactors can occur, which have prime cycle-lengthes A,=q. (or A,=1 but this
cannot occur since 21-1=1<p, for all k)

For instance the primefactor p=5 cannot occur in any strict Mersenne-number M, be-
cause A,=4 never divides any prime g, as well as p=11 cannot occur and others. Also the
two known wieferich-primefactors p=1093 and p=3511 cannot occur, since their cycle-
lengthes are A;o93=2%:7-13 and Azs;; = 33-5-13 and thus not prime. So we can reduce the
list of candidate primefactors to

)2 Hg.70) ) = (14g.231), 2(+(a.31) | 2(1+1q.47))

nry 20—1=3110Y pgil TPy e 89

Now because A, and p are always different and share no common factor, in the cases
that A, equals g, then p itself cannot equal g. Thus we can cancel all valuation-braces:

=(1+(.89))

q q q q q q

org 20 —1=37"77"231"31: 73" g0i " ..

and we have a pretty direct representation for the primefactor-decomposition of
mersenne-numbers M,. Note, that in the example I've still documented the a,-values
being 1; because it is not yet known whether there exists another wieferich-prime (hav-
ing a,>1 ) at all or even with a cyclelength which is prime (For the cyclotomic version of
fy»(n) with base b=3 there exists a "generalized Wieferich prime" p=11, which has a prime
cyclelength A,=5 and occurs with a;;= {3M1 - 1,11)=2 so such a similar occurence for
Mersenne-numbers cannot easily be excluded) .

Mersenne-primes
Now, when is a Mersenne-number also prime?

We see, that the cycle-length A,=11 occurs two times: at p=23 and at p=89, thus the
mersenne-number M;; = 2'1—1 has that two primefactors and is thus not prime. Conse-
quently M;;,=2047 does not occur in the list of possible primefactors of another M,, . The
prime cycle-lengthes A, =2,3,5,... occur only once or: "for one primefactor p only", so
q=2,3,5,... define mersenne-numbers with only one primefactor and such M, are now
"mersenne-primes".
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"Unique" or "unshared" primes (primal cycle-lengthes A)

| tend to introduce that property as new term: the primal cycle-lengthes, which occur
only once may be called themselves (Mersenne) "unique primes" and the other prime
lengthes (which occur for more primefactors p) may be called (Mersenne) "shared
primes". Then we can say: the set U = [2,3,5,7,13,17,19,31,...] of unique/unshared
primes u defines the set of prime Mersenne-numbers M,

375 Let2Y—=1=M, then uelU <& M,isprime

Do all prime cycle-lengthes occur?

If the above list is short, we'll miss the prime cycle-length A,=7. We could ask, whether
all prime cycle-lengthes must occur.

The answer is easy: M, = 29—1 is either prime or composite.
— If M, is prime, then it is also the primefactor having cycle-length A,=q; and A, exists.

— If M, is composite then it has two or more primefactors, all with the same cycle-
length A, =A, = q (q is prime having no smaller factors) thus also this A, exists.

Since g can be any prime, this holds for all g and this means all primes occur at least one
time as cycle-length A,.

3.8 Iterated Mersenne-numbers (iterated 2"-1 where n is any positive integer)

We can look at the primefactor composition of iterated Mersenne-numbers, like
(381 N1 = 2"-1 n;= 2Mm-1 n; = 2M-1 Ng=...
The algebraic formulae introduced here help to express this for the primefactors.

When we look at a primefactor g then in most cases we need also the informations for
the smaller primefactors, for instance for A, or its primefactors. So to make a list we
note first the (trivial) evaluation

(3.8.2) {nl,2} . {2n —1,2} = 0
meaning that for no n n; can be even, can be divisibly by 2.

Then the list of odd primefactors shows slightly varying behaviour:

{(n,,3): (2" -1,3} = =~(1+{n3})

(3.8.3)

SR A

. 271
(n,3}: (277 =13} =;(1+{2"—1,3}) =0

so no iterated ny.; contains the primefactor 3

(n5): 2"-15 = = Z(14{n5))
(3.8.4) 4
271

{n,5}: {227 =15} (1+{2'-15})) =0

4

so no iterated ny.; contains the primefactor 5
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(n7): (2" -17) = :13’-(1+{n,7})

GES) 1y 7y (27 -17) :2;(1+{2"—1,7}) :§(1+~:-(1+{n,7})j

(7} 27 17y ==+ -1m) =0
so n, where n is even contain the primefactor 7, but no iterated n,.,

(n,11}:(2" =111} = =f(1+{n,11})
(3.8.6) 10

. 2"-1
{n,,11}: (27 111 =1~0(1+{2"—1,11}) =0

so no iterated ny.; contains the primefactor 11

{n,,23}: (2"-123} = = £(1+{n,23})
N 2"-1 n n
(87 (n,23): (2°71-123) =~ (1+{2" -1,23}) :fa(”ﬁ(”{”’BDJ
{n,,23}: (2m-123} = "1~f(1+{n2,23}) =0

so n, where [n:10]=1 contain the primefactor 23, but no iterated n;.,

Of special interest is by all this the primefactor p=127

(n127y:  {2"-1127) = - ~:~(1+{n,127})
127} (27 —1127)  =~(+{n,127)) :i(1+i(1+{n,127})j
(3.8.8) 7 3 7
(n,127): (2% -1127) = ;(1+{n2,127}) =§(1+;(1+;(1+{n,127})n
{n,,127}: (2" -1,127} = ;(1+{n3,127}) =0

so even n; where [n:2]=1 contain the primefactor 127, but no iterated ny.;

Sidenote: since we know that M;,, = 2127-1 is prime, we can easily copy that pattern to
conclude, that first {ns, M;,,}=0

Wieferich primes:

gy  W1093):2'-LI093) =~ (2+4(n1093))

. 21
{n,,1093}: {22 ~1,1093} =3;4(2+{2"—1,1093}) =0

while n; can contain 1093 to the second power (but not to the first!) no iterated
N7 contains the primefactor 1093

(n,3511):{2" ~13511) = - 1;55(2+{n,3511})

. 21
P 35111277 —13511) = ~

75

(2+(2'-13511) = 31;(2+ 17155(2+ (n351 1})]

(m,3511):{2" ~13511) = ;'6(2+{2"z ~13511)) =0
while n; can contain 3511 to the second power (but not to the first!), n, can con-
tain it to the 2™ 4™ 5™ 6" ... (but not to the 1% or 3"(!)) power), and no iterated
Ny contains the primefactor 3511
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What we are essentially doing here is to iterate the lambda-function A,. This includes
here also to generalize it to A,, where m is no more prime. Iterations of this tend always
to smaller numbers and finally to zero, so we can see, that for each primefactor p we
have {n,,p}=0 for some k>K where the upper bound K>1 is some small number (equal or
smaller than the height of the iterated base-2-logarithm log,(1+x) applied to p ).

3.9 Cyclotomic expressions/repunits/q-analogues

An interesting variation of the function f, ,(n) is the "cyclotomic" version

f,,a(n) b"—a"

(3.9.1) Cpbaln) =b"1+b™2g+b"3a%+.. +ba"? +a"!
Jpa@ b—a
For the introduction let's look at that simpler expression with a=1 first
b" -1
(392 Cb(n) = _]]2,((711)) =1 ™1+ b2+ b3+, +b +1 =[n],
A _

The latter expressions are also called "repunits", because in the number-system with
base b they are written as string with n ones: 111111111, . Also they are known as g-
analogues [n],

The primefactorization changes in the following way. In the factorization of f,(n) we find
at all primefactors, which are also factors of f,(1) = b — 1 and thus having the order/ cy-
clelength A,=1 . Name this group of primefactors with the letter r, then the primefactor-
decomposition looks like

n

L lelnrl) ~(a+{nr)
(3.9.3) b"—1= I IP I I”
peodd reodd
primes primes
A4,>1 A,=1
Since
A .
~ “ +l.p ~(a,+{1,r})
_ Ap rT _ a,Hr} a,
(30 b —1= Ilp IIr‘ —IIr —IIr
peodd reodd reodd reodd
primes primes primes primes
A4,>1 A.=1 A,=1 A,=1

the construction of the cyclotomic version means just to remove that last product-
expression:

n z
b —1 3 i (@, +{n.p}) (s}
(3.9.5) = H p H r
b 1 peodd reodd
primes primes
A>1 A=1

and the primefactors r occur exactly when r dividesnor [n:r]=1.

Sidenote: the right-most productterm in that formula is similar to the product-
formula for n:

I Ir{n,r}
re primes

which is interestingly also true, when in calculus the lim, . ; [n], is invoked (a well
known property of "g-analogues")
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3.10 Primefactors in the Lucas-sequence

A view on the modular properties of the Lucas-sequence, in a usenet-discussion 2005:
Am 03.12.2005 03:53 schrieb c***@c***.com:

>>>>>>|t is easily shown that the Lucas sequence

>>>>>> 1,3,4,7,11, 18, 29, 47,

>>>>>>contains no multiples of 5.

>>>>

>>>>Right. The mod5 sequenceis 1, 3, 4, 2, 1, 3, at which point you have a
>>>>string of 2 repeating, so you know it's an endless loop and will never hit 0.
>>

>>>>>>Moreover, it contains no multiples of 8, 12, 13, 17, 21, 28, 33, 37,
>>>>>>53, 57, 61, 69, 73, 77, 87, 89, 92, 93, or 97.

>>>>>>

>>>>>>Right now | do not know how to decide, for given n, whether the Lucas
>>>>>>sequence contains multiples of n. Similarly | would like to decide
>>>>>>for given a, b, n, whether the generalized Fibonacci sequence (a, b,
>>>>>>a+b, a+2b, 2a+3b, ...) contains multiples of n.

>

>>>>You could run through the sequence mod n until it repeats. It will
>>>>definitely repeat before term n?2. (Maybe somebody else can put a tighter
>>>>pound on it.)

>>

>> The following link:

>>

>> http://www.mathpages.com/home/kmath078.htm

>>

>> has some relevant calculations; in particular, for the Lucas sequence,
>> the upper bound appears to be 4*n, while for the Fib. sequence, it is
>> 6*n.

>>

My answer, which | also formatted/edited a bit for this article:
Hi -
since you coin the cyclicity of the modules, I'll apply my approach to that question: to
find the "order of the cyclic subgroup modulo any prime p" (call it A,(b,a)) and analyze
them in a joint framework for all primefactors; here for the expression
(3.10.1) Gbaln) =b"+a"
where
(3102) b=(1+sqrt(5))/2 = a=(1-sqrt(5))/2 = -1/¢
which generates the Lucas-sequence <2,1,3,4,7,...> for subsequent n>=0.

The pair of bases (b,a) has irrational values, so some "nonreglar" effects concerning cy-
cle-lengthes etc. may occur. For instance for prime p=7 the cycle-length A, is

Mlp,-1/p) =8

and the first occurence of the primefactor p=7in g(n) is at n=4. Thus, instead of having a
cycle-length being a divisor of p-1 we find a cycle-length being a divisor of p+1.

Translation to the fibonacci-sequence

To understand the following expression for primefactorization it may be useful to notice
another identity.

According to the discussion (here in chap 1) we can see gy, 4(n) as quotient f,, ,(2n)/fsq(n),
and the function f, .(n)/fs4(1) is known as the generating function for the sequence of fi-
bonacci-numbers <0,1,1,2,3,5,8,13,21,...>for n > 0.
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So we can write

Jo.a(2n)/f5,q(1) (b?" —a®)/(b-a) b2 — 2"

(3103) Gbaln) = = Som oo
Fo,aln)/fo,a(1) (b"—a")/(b-a) b"—a"
The cycle-lengthes A, and the exponent at first occurrence a, must be determined for
each prime individually; with that heuristics we get the following primefactor-
decomposition for fy, o(n)/fp4(1) = (b"-0a")/(b—0a):

n n
~{7n,7}  _~{l1n,11}
8 10

bn _an ;[1+{11,2}+:(1)] f{3n,3} f(,,,S}
=2 S350

—da

;(1371,13}17;{1771,17} o

7 11 13

(3.10.4)

where | used the shorter notation {p-n, p} for (1+{n,p}).

It is interesting, that at p=2,3,7,13,17,...=5k+2 we have the cycle-lengthes related to p+1,
and at p=11,...,...=5k+1 related to p-1, and at p=5 even directly related to p itself. (We
have seen the latter effect in the paragraph about the cyclotomic functions). Heuristi-
cally it seems that

3.105) Ccycle-length equals p(=5) :forp=5
cycle-length divisor of p—1  : for p=+1 (mod 5)
cycle-length divisor of p+1  : for p=+2 (mod 5)

So, if there is no "wieferich" effect and thus all "initial exponents" a equal 1, then the
above formula could even more be simplified.

Now, g,4(n) can be computed by f;, ,(2n)/fsq(n) , and its primefactor-decomposition be-
gins as follows:

2n(2n 2n 2n 2n 2n 2n 20
T3t ien3) _~{2n5)_~(14n7), - (22011}, ~{26n13} _~{(34n,17)
RN 34 5 7x 10 7 9

5

25(;*‘2"v2’]3§<3n,s>

11 13

;(13;«.13)17;(17",17)

17

(3.106) pn 4 g" —

~{n,5} _~{7n,7} _~{l1n,11}
5 8 10

5 13

Like in the earlier chapter we collect exponents; because the valuations wrt 2n and n are
equal except for the primefactor 2:

7 11

2n( 2n nn N

H :+<4”’2}]—~(~+f2”’21] G5 C-Hims)_C-Sann C-Sm
b’1+a’1:23[- 32 344 55 s 78 s 1110 1
(3.10.7)

2n n 2n n
(~=~){13n,13} _(~—=~){17n,17}
707 9 9

*13 17

As in the example before, all primefactors with odd A() vanish because their "divides"-
expression in the exponents cancel, so we have finally

2—3) (z—z){Sn,S} (Z—j){7n,7} (j—ﬁ){lln,ll}
2 2 4 4 8 5 10 e

3 7 11

where the exponent of p=2 was also simplified.

~(
3108 b"+a"=2°

From this we get the cycles for the primefactors 2<=p<=17:

p=2: for n=6k we have 2*; for n=6k-3 we have 2°
p=3: cycle-length 4, beginning at n=2

p=5: -does not occur -

p=7:cycle-length 8, beginning at n=4

p=11: cycle-length 10, beginning at n=5

p=13: -does not occur-

p=17: -does not occur-
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and also we can conclude from the properties of the prime-factors in the fibonacci-
sequence to that of the lucas-sequence. The (super-)cycles for higher exponents are
powers of the according prime as indicated by their valuation-terms {p*n, p}.

3.11 Aviewinto FLT
"Fermats last theorem"® () is somehow "the classical" problem to be expressed and
studied with the "cyclic subgroups"-concept. We have the exponential diophantine
equation

(3.11.1) (foo(n) =) b"—a" =c"
which is now known to have no solution given b>a>c>0, n>2 . This can -without loss of
generality- be reduced to

(3.11.2) b?—a%=c"

having gcd(b,a)=1, q prime. Because exactly one of b,a,c must be even and we can order
them such that the rhs is odd, we can omit the primefactor 2 in the primefactordecom-
position of the lhs as well.

Amateurish approaches (like early fiddlings of mine) to that problem can at most give
likelihoods, and also the notation in the current framework does not evolve to an ele-
mentary solution of the problem. But it exposes another spotlight which | feel is intrigu-
ing: it reduces to the problem of existence of generalized wieferich-primes (with addi-
tional properties required).

We restate the primefactorization for the lhs f,, ,(q) and exhibit conditions: when can this

primefactorization be a perfect power c? where all primefactors of ¢ have the same ex-
ponent q (or multiples of it) ? Using the primefactorization of the lhs we get:

q
~ (@, +{g.p}) 7
A

(3.11.3) b —a’ = I I p’ = c?

peodd
primes

Here we know already, that the lhs, und thus the rhs, contains the factor (b-a) which de-
fines a set of primes r having cycle-lengthes A, =1 , which we make explicite:

(e, +a.1)
sy b'—a’=]r I1»

;p(w,ﬁ{q.p})

re {)dd pE gdd
primes priumes
A=1 A>1

We can sharpen this formula a bit more.

First, for the primes p we can remove the valuation-brace because for some p if the A,>1
then it must A,=q . But it cannot occur, that at the same time A, and p are equal to a
prime g. So we can reduce the second product-terms:

~(a,)

(e, +{q.r}) ;
(3.11.5) b'—a’ = H’”] HP ’

reodd peodd
primes primes
A=1 A>1

6 .
"last" means here: "last unsolved", now correctly "Wiles' theorem"
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Second, looking at the r-primefactors we see, that the valuation-brace as well can be
removed when r#q. So the primefactor g plays a special role if it is factor of (b-a) (means
also: has cycle-length 1). So we make this explicite, too. The final formula looks then like

q

~ (a,+1)

A a, 4
(3.11.6) bq—aq=q” II” I IPF

r#qeodd  p#qeodd
primes primes
A=1 A=q

and separated for the two cases for [ b-a : g/=1 (or A,=1):
(3.117) case 1:q is primefactor of (b—a) =f,4(1); that means: qul and {b -a,q} = a,

q_ 9 _ a,+{q.9} b-a a,
b'-a' =4 a,+q.q) l IP
peodd
primes#q

A=q
=¢"" T TI»"

reodd peodd
primes primes
A=l,r#q A=q
3118 case 2.qis not primefactor of (b-a); /\q<>1 (and can thus not occur in c9)
o
b?—a?’ =(b-a) I Ip ’

peodd
primes

A=q
- T~ 11"

reodd peodd

primes primes

A=l,r#q A=q
The set of primes r constitute the primefactors of (b-a) (excluding g), and this set is dis-
junct to the set of primes p which are furtherly multiplied to (b-a) to form the final value
fnalq). So it is required, that the exponents ¢; resp ¢, of all this primefactors are equal
to g or to a multiple of g . If also g is factor of (b-a) it must thus have exponent g-1. It is
possible to construct infinitely many such (b-a), which then means simply a perfect
power, say b —a = D9 or b—a = g9 1D?, thus b=a+D? or b=a+q% D7 with some (though not
completely) arbitrary a and D.

But the problem occurs still with the set of primefactors p, (which necessarily is present

since b%-a%>(b-a)), because all involved primefactors must be of the generalized
wieferich type of order q (it must always be a,(b,a)=q); and while wieferich types with
ap(a,b)=2 are already rare, that with a,(a,b)=g>2 are even more rare.

What means "rare"? In ”Fermatquotients7” | studied the construction of (b-a) such that for a given
prime p and a nontrivial pair (b,a) the value a,(b,a) is arbitrarily greater than 1. The term "rare” means
according to that text roughly, that in a set of n solutions (b,a) with fixed a and consecutively increasing

b providing a,(b,a)=2, the number n, of solutions for a,(b,a)=q is of order n”

7 online: http://qo.helms-net.de/math/expdioph/fermatquotients.pdf




