Exponential diophantine problems

Gottfried Helms - Univ Kassel          (Miniatures since 07' 2007)

 

Table for Fermat-quotients of degree m≥2
for integer bases b<p (where p
∈ ℙ )

The following table displays p-adic-expansions of bases b, for which

               bp-1 ≡ 1 (mod pm)

In ([1],2009) I discussed earlier the problem of Fermat-quotients and introduced a couple of small tools and concepts which I use here. This table focuses on data for only a specific subset of the entire problem.

The casual reader who is not aware of the concept of Fermat-quotient may look in the wikipedia (see:[wp]) first which gives some basic insight and a couple of further references/online-links.

The reader may find some quite involved related tables in the internet, see the references-section at the end of this article for some online-links to homepages which I got aware of.

 

Some preliminary definitions:

1) In the following I (mis)use the braces for a shorter notation to express the above statement for a more general view. (A misuse which has been helpful through all my discussions/treatizes of exponential diophantine problems.) For the case, that a number n contains the primefactor p to the m'th power I write for p's canonical exponent in n:

{n, p} = m                                          ==> n = x ∙ pm ∙with gcd(x,p)=1

                Note that this notation is a bit more algebraic/concise than "pm| n" or "n≡0 (mod pm)"because -if in the two latter two cases m is the indeterminate- then the expression gives only an upper limit and not a precise value to m. So for instance,

{2p-1-1, p} = 2

is a bit more restricted/precise than the original definition for a Wieferich-prime p which requires only

{2p-1-1, p} 2

(where we know only two solutions p=1093 and p=3511 for m ≥2 anyway).

Similary for instance

{35-1 , 11} = 2
{19
6-1 , 7} = 3
{740862
6 – 1,7}  = 7
{175909088838
12 – 1,13} = 12

indicate Fermat-quotients for (3, 11), (19, 7), (740862, 7) and (175909088838, 13) of degrees 2,3,7 and 12 respectively.

 

 

2) Let's define here the term "degree of the Fermat-quotient":

{bp-1-1, p } = m                  ==> m is the degree of the Fermat-quotient of the pair (b,p)

 

 

3) By the p-adic-representation of the bases b which provide high Fermat-quotients for some prime p we can read the table like in the following example:

p

b

d0

d1

d2

d3

d4

d4

d5

d6

d7

d8

d9

d10

...

7

1

1

0

0

0

0

0

0

0

0

0

0

0

...

7

2

2

4

6

3

0

2

6

2

4

3

4

4

...

7

3

3

4

6

3

0

2

6

2

4

3

4

4

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

 

Here the column p indicates the prime, the column b the "root" bases - "root" means here, that from b = d0 further bases bm can be derived according to the given p-adic digits d0,d1,d2,... Actually the entry in that column is identical with the entry in column d0 which simply contain all congruence-classes (mod p) .

The "p-adic" convention means, that the "digits" are just the digits of the number-representation of some number in the number-system to base p, so to say:

bm = "dm-1 ... d2 d1 d0" base p

so for the row with "root" base b=2 we can get the following subsequent bases b1,b2,...

b1 = 2                                   = 2                         ==>        {26 -1, 7} = 1
b2 = 2 + 4∙7                        = 30                      ==>        {30
6-1, 7} = 2
b3 = 2 + 4∙7+ 6∙7
2            = 324                    ==>        {3246-1, 7} = 3
...
and in general
bm = 2 + 4∙7+ ... +dm-1∙7
m-1                            ==>        {bm6-1, 7} = m

But note, that also infinitely many bases of the form

     let x a positive integer such that gcd(x,6) = 1
b2 = 2 + 4∙7+ x∙7
2            = 30+x∙49           ==>        {b26-1, 7} = 2

give also fermat-quotients of degree 2, so

               {796 - 1, 7} = 2

We can conclude one more result: because we see here a set of infinitely many bases in arithmetic progression, we have even - due to Dirichlet's theorem - a proof, that for each prime p and each degree m we'll find infinitely bases bm which are prime themselves.

So such a table essentially gives the (p-1)th roots of 1 modulo some pm in the p-adic sense and can in analogy be thought as representing the unit-roots exp(î∙π∙m/(p-1)) in the case of the complex number plane.

(end of preliminary definitions)

 

Note that b=d0 being a residue (mod p) means, that all bases b gotten by p-adic-expansions beginning at a residue d0 <>0 (mod p) are also coprime to p and have no (yet recognizable) simple restrictions, so for instance they

  *  can be even,
  *  can be odd,
               and in particular
  *  can be prime themselves.

Sometimes tabulations of Fermat-quotients display only prime bases b - for instance because there is great relevance connected to other exponential diophantine problems like FLT -for instance by the analyses of A. Wieferich (after whom that Wieferich-primes are named) and others. But this is not intended here; here I want to display the general scheme and in that scheme I want to focus to that subset of higher Fermat-quotients where the bases are in the residue classes of the associated primes and thus smaller that that primes.

 

Base b smaller than prime p

The example computation in the above lines shows immediately, that the displayed bases b = b1, simply equalling the residue-classes (mod p), are the only ones which are smaller than the prime which defines the congruence. High fermat-quotients are very rare for such cases; two prominent examples are the above mentioned two Wieferich primes p=1093 and p=3511 to base 2 where we have 210921 (mod 10932) and 235101 (mod 35112) or in the new notation {21092-1, 1093} = 2 and {23510-1, 3511} = 2 ; another one is p=11 and the base b=3 where we have {310 - 1, 11} = 2 .

To have such a case is equivalent to have the digit d1=0 in the table, because that means, according to the example above

b2 = d0 + 0∙p1                     = d0        = b1        ==>        {b1p-1 -1 , p} = 2

and the earliest example is that for prime p = 11 and base b1 = 3

 

p

b

d0

d1

d2

d3

d4

d4

d5

d6

d7

d8

d9

d10

d11

11

3

3

0

1

2

3

6

10

8

7

0

6

3

9

 

(Note that in general zeros in the digits occur randomly scattered over the digits in the table)

The well known Wieferich-primes p=1093 and p=3511 are immediately recognizable in the table by this: they are the only occurences so far, where the root base (= residue d0) equals 2 (or some small powers of 2) and the digit d1=0. They are marked orange here:

p

b

d0

d1

d2

d3

d4

d4

d5

d6

d7

d8

d9

d10

d11

1093

2

2

0

974

227

564

478

1009

395

581

1027

834

136

534

3511

2

2

0

102

2379

495

3468

1939

2849

2386

752

3077

803

3499

 

 

 

Higher degrees of Fermatquotiens

For even higher Fermat-quotients we can proceed by looking for further consecutive zeros in the digits:

               b3 = d0 + 0∙p1+ 0∙p2         = b0                       ==>        {b3p-1 - 1, p} = 3
               bm = d0 + 0∙p
1+ ...+ 0∙pm-1= b0                      ==>        {bmp-1 - 1, p} = m
               ...

 

Cases m=3

The only case of the fermat-quotient of order m=3 (where also the base is smaller than the defining prime) occurs with the prime p=113 and the base b3 = b1 = d0 = 68 :

p

b

d0

d1

d2

d3

d4

d4

d5

d6

d7

d8

d9

d10

d11

113

68

68

0

0

92

4

67

65

0

13

7

106

20

16

 

For this I checked the primes up to p=17 389 (which is the 2 000th prime). In the mathematical-discussionboard MSE (see[2]) one correspondent confirmed that observation and proceeded saying he had found this to be true up to p=104 729, (which is the 10 000'th prime) . In [3] we find that no further example occurs up to p ~ 3.6 ∙ 108

 

Cases m>3

I've not found any higher degree Fermat-quotients for pairs of bases and primes with b<p.

 

Gottfried Helms, 7.12.2013

 

Table 1, b<p:

p-adic representations for bases allowing fermat-quotients up to degree 12, where the high fermat-quotient occurs already for the "root" bases (which are smaller than the defining prime). That is equivalent to say that the p-adic-digit d1 = 0 .

p

b

d0

d1

d2

d3

d4

d4

d5

d6

d7

d8

d9

d10

d11

11

3

3

0

1

2

3

6

10

8

7

0

6

3

9

11

9

9

0

6

1

9

8

7

1

3

2

0

0

6

29

14

14

0

6

9

19

22

8

24

4

3

19

16

25

37

18

18

0

26

16

3

34

26

35

26

24

18

24

1

43

19

19

0

34

35

10

37

7

26

6

41

34

4

21

59

53

53

0

28

27

40

50

43

2

38

17

21

45

38

71

11

11

0

9

23

19

43

34

58

41

12

49

52

48

71

26

26

0

19

48

7

70

7

9

25

60

45

27

29

79

31

31

0

22

69

9

4

0

69

27

67

11

51

42

97

53

53

0

87

20

43

33

35

56

75

38

17

7

71

103

43

43

0

69

94

23

81

59

78

91

45

75

19

9

109

96

96

0

63

53

40

18

51

44

40

99

57

62

83

113

68

68

0

0

92

4

67

65

0

13

7

106

20

16

127

38

38

0

14

80

89

79

92

87

33

49

34

108

78

127

62

62

0

38

18

74

120

88

26

85

117

22

102

121

131

58

58

0

58

45

43

35

118

39

49

117

20

67

93

131

111

111

0

100

6

68

71

120

87

121

113

124

2

1

137

19

19

0

32

71

56

130

42

88

50

33

95

120

36

151

78

78

0

24

93

15

23

57

16

50

119

20

54

29

163

65

65

0

117

74

136

122

122

90

95

161

79

119

141

163

84

84

0

30

38

143

65

86

83

84

150

160

147

3

181

78

78

0

122

38

129

144

116

13

64

54

10

97

32

191

176

176

0

70

66

133

24

78

95

120

16

148

13

67

197

143

143

0

180

145

6

84

55

185

7

77

174

25

41

199

174

174

0

105

162

83

129

100

104

106

36

10

83

176

211

165

165

0

192

78

98

178

173

190

77

96

101

58

86

211

182

182

0

155

11

37

210

111

113

126

10

199

119

24

223

69

69

0

41

45

55

211

154

104

52

8

140

215

115

229

44

44

0

120

127

35

174

225

143

172

7

161

17

73

229

209

209

0

219

104

7

38

62

94

32

167

209

89

92

233

33

33

0

34

13

124

218

79

170

138

23

22

145

55

241

94

94

0

200

219

44

40

139

133

194

33

79

216

98

257

48

48

0

35

193

232

136

111

42

246

8

240

108

153

263

79

79

0

228

138

101

146

179

235

11

154

235

65

25

269

171

171

0

113

237

101

88

201

166

6

182

69

230

91

269

180

180

0

74

218

219

202

244

259

140

164

82

64

245

269

207

207

0

77

22

243

185

188

90

167

129

189

99

31

281

20

20

0

127

19

267

238

270

101

2

147

168

255

241

283

147

147

0

26

218

169

270

98

171

149

208

28

73

159

293

91

91

0

39

206

171

105

26

97

289

219

38

212

97

307

40

40

0

65

32

263

223

198

59

173

201

300

51

156

313

104

104

0

218

120

107

74

51

239

108

42

125

305

227

313

213

213

0

58

53

223

63

66

120

238

69

293

236

74

331

18

18

0

14

185

36

326

146

77

236

117

314

217

208

331

71

71

0

147

280

26

271

249

28

266

190

81

72

272

331

324

324

0

173

41

188

39

158

186

190

192

261

44

66

347

75

75

0

27

292

130

202

322

311

308

91

124

68

45

347

156

156

0

204

298

48

283

227

292

96

238

158

288

171

349

223

223

0

164

173

80

185

86

312

39

96

135

319

200

349

317

317

0

103

38

68

134

72

47

119

213

260

143

75

353

14

14

0

337

259

116

221

334

144

288

263

294

249

149

353

196

196

0

258

218

347

348

162

301

246

26

14

219

298

359

257

257

0

7

62

98

138

61

136

346

355

202

95

59

359

331

331

0

220

114

233

245

242

343

204

171

157

105

184

367

159

159

0

8

121

119

104

131

157

155

171

361

260

334

367

205

205

0

357

199

82

254

320

156

227

196

115

135

257

373

242

242

0

85

355

365

313

261

262

275

8

304

76

16

379

174

174

0

198

72

194

145

375

164

136

90

120

97

280

397

175

175

0

184

332

45

282

293

362

7

18

355

77

396

401

280

280

0

111

66

332

351

28

254

130

160

12

373

20

419

369

369

0

210

182

164

36

27

57

284

65

109

78

307

421

251

251

0

391

78

129

155

80

102

361

409

247

41

368

433

349

349

0

226

95

120

215

8

94

113

137

206

50

182

439

194

194

0

171

199

141

134

421

15

420

120

321

21

35

449

210

210

0

241

129

137

282

393

314

294

83

246

101

212

461

52

52

0

206

196

154

265

320

98

291

416

232

273

451

463

255

255

0

177

75

422

113

430

83

351

42

169

375

265

463

345

345

0

40

331

112

286

24

426

256

175

307

436

370

487

10

10

0

329

462

103

341

149

54

64

287

349

100

311

487

100

100

0

249

0

258

336

428

281

36

237

54

415

322

487

175

175

0

427

44

471

72

106

273

475

187

406

475

207

487

307

307

0

424

391

356

98

429

194

148

479

236

420

3

499

346

346

0

460

279

269

135

282

230

492

301

219

312

420

509

93

93

0

263

29

65

137

86

45

367

277

294

481

493

509

250

250

0

362

34

224

121

181

23

163

373

211

115

476

521

308

308

0

234

382

126

54

143

270

374

143

129

105

504

523

241

241

0

177

363

517

57

483

214

449

291

455

515

365

547

427

427

0

80

35

1

9

519

12

248

135

52

437

525

557

430

430

0

216

407

507

519

454

443

482

394

423

307

4

563

486

486

0

95

227

453

37

221

314

138

122

430

552

234

571

262

262

0

465

32

170

218

521

229

319

188

359

219

231

571

422

422

0

235

88

536

559

257

229

106

540

414

430

452

571

516

516

0

432

328

306

112

386

407

316

168

298

190

9

577

427

427

0

173

365

178

420

563

350

442

230

281

568

135

599

559

559

0

22

516

267

499

67

485

573

452

454

565

338

599

588

588

0

589

354

135

381

250

166

129

215

282

372

246

601

405

405

0

206

198

25

241

258

187

133

391

525

404

295

607

162

162

0

28

95

427

332

475

143

10

374

525

53

61

607

302

302

0

298

328

238

332

253

427

365

482

386

364

1

617

556

556

0

295

98

413

185

346

272

288

5

439

33

555

619

286

286

0

412

73

19

138

443

323

552

101

519

576

4

631

69

69

0

436

306

380

15

431

309

438

213

508

462

250

631

534

534

0

166

492

272

428

130

153

213

346

378

261

273

641

340

340

0

262

69

543

35

618

472

390

519

613

20

474

647

56

56

0

140

27

415

35

514

425

378

583

89

458

253

647

526

526

0

424

398

143

435

400

187

561

421

578

392

523

653

84

84

0

256

398

21

227

576

63

105

604

360

551

337

653

120

120

0

380

432

266

387

96

541

640

138

311

454

151

653

197

197

0

488

104

542

530

73

535

89

26

154

125

304

653

287

287

0

242

101

139

90

595

75

26

265

559

647

617

653

410

410

0

550

517

360

607

363

295

451

73

367

504

652

659

503

503

0

332

163

234

104

573

123

3

637

498

72

46

661

184

184

0

24

88

510

39

522

472

487

446

32

600

5

673

22

22

0

131

423

461

316

512

460

298

0

549

192

316

673

484

484

0

380

449

457

280

57

208

610

668

555

341

244

701

375

375

0

608

72

366

153

324

202

483

404

383

105

355

727

92

92

0

148

465

314

508

11

31

88

13

164

581

357

739

168

168

0

338

187

646

243

602

64

62

195

681

478

230

743

467

467

0

301

187

637

366

614

176

85

187

552

288

193

761

675

675

0

240

616

172

161

269

43

462

481

759

669

550

769

392

392

0

749

733

564

221

316

264

293

466

340

696

542

773

392

392

0

575

155

542

561

413

446

173

546

81

245

375

797

440

440

0

651

772

713

596

647

154

69

511

416

563

228

797

446

446

0

133

654

744

149

541

441

195

222

529

417

1

809

207

207

0

136

315

270

374

671

514

533

322

556

253

603

823

393

393

0

546

57

76

596

160

414

133

740

627

385

297

827

314

314

0

587

431

569

179

608

385

0

118

506

728

509

827

381

381

0

471

730

400

773

607

299

760

280

656

178

480

829

46

46

0

416

576

9

262

755

19

576

659

306

652

387

829

632

632

0

805

672

312

78

524

275

738

208

683

20

821

839

667

667

0

11

295

797

257

832

360

25

153

134

401

788

857

682

682

0

580

841

472

470

270

553

763

247

42

781

394

859

643

643

0

571

357

16

689

823

4

328

311

716

464

209

863

13

13

0

223

549

234

434

827

732

727

373

463

629

574

863

169

169

0

620

472

597

754

378

551

481

279

579

638

756

863

434

434

0

362

749

6

860

254

560

395

438

178

791

680

877

166

166

0

82

875

839

55

93

562

657

372

541

830

526

883

644

644

0

798

613

531

182

277

738

635

393

228

723

250

883

657

657

0

539

735

114

572

515

757

846

839

13

214

216

883

754

754

0

765

92

747

821

54

410

403

875

655

14

828

887

292

292

0

455

170

748

775

370

490

186

715

498

157

698

907

127

127

0

137

271

198

33

837

240

191

571

828

476

309

907

761

761

0

455

797

276

341

797

449

578

290

269

406

425

907

771

771

0

409

815

892

441

213

535

209

336

728

505

730

911

328

328

0

672

30

58

222

866

865

17

817

391

875

619

919

457

457

0

855

700

794

688

724

363

145

798

323

119

552

941

292

292

0

172

395

299

939

178

489

440

7

689

635

512

947

208

208

0

312

35

913

584

565

6

410

775

879

299

809

953

325

325

0

572

927

616

271

312

900

736

196

723

30

312

967

287

287

0

825

375

427

750

261

32

728

516

219

280

682

971

296

296

0

948

665

509

708

761

603

285

562

329

661

4

977

238

238

0

347

362

124

792

240

200

756

161

243

741

462

977

354

354

0

850

276

686

637

400

930

929

95

105

884

144

983

419

419

0

213

574

546

313

131

413

53

233

388

969

833

991

976

976

0

575

10

287

151

223

170

673

938

644

102

782

997

252

252

0

263

89

35

122

232

177

340

31

656

430

975

1009

990

990

0

124

622

369

650

10

652

877

737

519

691

289

1013

899

899

0

53

939

233

19

435

933

764

290

801

955

370

1019

705

705

0

567

21

532

557

518

854

25

529

594

417

158

1021

551

551

0

260

41

772

221

55

674

42

959

304

485

635

1021

637

637

0

589

121

633

88

773

342

354

91

804

655

333

1031

158

158

0

480

830

356

934

477

622

710

463

770

100

369

1051

806

806

0

473

472

90

578

635

631

429

987

224

39

242

1061

508

508

0

688

141

676

860

1001

444

150

103

850

825

635

1061

917

917

0

927

579

89

823

291

615

182

526

837

78

720

1069

487

487

0

200

281

102

91

1020

732

285

585

688

933

294

1087

617

617

0

69

32

215

116

253

343

137

787

598

20

1069

1087

740

740

0

667

801

656

635

137

1075

554

970

612

603

320

1091

691

691

0

344

654

419

729

142

357

405

134

588

560

604

1093

2

2

0

974

227

564

478

1009

395

581

1027

834

136

534

1093

4

4

0

617

911

22

127

436

652

1082

282

490

680

617

1093

8

8

0

758

548

1017

484

587

858

153

261

275

1033

699

1093

16

16

0

564

734

507

841

302

601

527

806

750

801

954

1093

32

32

0

317

743

855

245

337

933

967

356

787

38

234

1093

64

64

0

105

35

624

721

693

233

641

256

810

308

709

1093

128

128

0

245

446

816

460

1024

275

545

532

401

285

940

1093

256

256

0

560

551

976

443

773

450

275

240

1071

524

75

1093

512

512

0

167

421

1054

720

588

456

112

1072

227

128

1009

1093

1024

1024

0

614

571

46

499

179

113

286

721

989

468

139

1097

425

425

0

26

245

1049

249

341

724

106

41

347

69

1011

1097

579

579

0

763

103

818

258

393

810

261

805

264

120

973

1097

776

776

0

620

916

30

815

652

151

357

698

307

129

138

1103

284

284

0

835

17

453

446

84

354

412

589

730

1074

886

1103

793

793

0

580

1071

306

463

830

699

859

172

222

268

395

1103

1054

1054

0

344

685

433

201

756

483

5

245

675

558

634

1109

76

76

0

939

809

237

480

479

1107

637

129

392

867

156

1109

1082

1082

0

783

361

697

958

48

616

149

794

60

133

1028

1117

1066

1066

0

898

390

571

219

1096

267

878

759

80

868

135

1123

897

897

0

639

1027

895

574

845

571

509

433

73

773

113

1123

1012

1012

0

371

669

175

423

392

604

1042

815

547

645

614

1163

78

78

0

1098

801

411

910

227

499

290

721

643

885

799

1163

170

170

0

428

1101

877

826

57

692

90

574

687

744

605

1163

241

241

0

364

519

987

983

184

662

156

159

92

997

997

1163

618

618

0

941

548

1152

1052

932

236

827

244

465

173

961

1181

874

874

0

304

948

177

215

662

90

55

13

207

287

575

1187

184

184

0

350

618

719

797

67

157

998

345

1017

536

1036

1187

315

315

0

503

1000

945

140

370

541

378

988

948

1132

40

1193

622

622

0

941

639

206

110

543

439

449

389

884

88

140

1201

206

206

0

411

1159

1118

848

842

465

457

1129

292

91

517

1213

178

178

0

20

837

172

364

671

1058

94

1145

1170

110

1039

1217

1188

1188

0

126

385

746

59

346

177

424

356

890

72

454

1223

997

997

0

743

770

969

557

48

55

398

223

771

332

183

1229

821

821

0

1021

765

663

1085

785

661

1217

812

285

612

354

1249

326

326

0

385

232

1234

1185

1083

219

1074

176

99

406

24

1279

683

683

0

170

53

846

1261

481

971

418

535

375

587

287

1283

45

45

0

791

1182

60

228

365

911

1265

1000

455

251

524

1291

62

62

0

17

698

644

798

311

167

837

823

866

1160

319

1291

1148

1148

0

143

119

24

605

147

961

971

1103

732

503

1076

1291

1286

1286

0

1166

961

41

104

765

57

690

797

190

757

476

1297

156

156

0

200

204

688

901

932

41

624

1128

67

85

477

1303

528

528

0

383

754

864

147

1292

651

1285

338

1055

152

1249

1321

403

403

0

899

701

737

674

388

440

885

1064

1095

252

1307

1327

585

585

0

968

642

607

640

378

1080

438

1073

247

1241

448

1327

1149

1149

0

707

865

1142

291

1174

216

1326

266

54

448

133

1361

228

228

0

1135

1151

901

1336

386

44

558

1234

923

1313

838

1367

411

411

0

821

461

915

1129

35

538

716

634

223

1124

1358

1373

884

884

0

291

855

67

378

133

350

331

244

979

1343

1014

1381

429

429

0

250

1342

1333

1196

842

241

273

1002

71

659

223

1381

653

653

0

1157

633

198

1002

1069

345

416

171

120

1354

990

1399

328

328

0

234

1124

836

567

1292

70

462

1223

28

412

264

1399

987

987

0

1081

1095

1373

1158

944

999

786

764

1083

941

1130

1409

1164

1164

0

191

900

260

426

1401

1126

1215

748

1271

31

1220

1429

688

688

0

965

39

739

1081

280

995

462

636

820

913

1174

1429

1401

1401

0

1261

620

1297

515

194

1253

144

945

639

703

502

1439

319

319

0

180

1292

1262

213

1217

1281

930

1111

698

69

362

1447

584

584

0

784

664

929

1198

1312

882

256

972

75

137

341

1453

365

365

0

1325

1105

1307

1371

702

255

1159

856

945

424

960

1453

378

378

0

1242

1441

129

59

662

946

1278

1063

801

1452

117

1459

1082

1082

0

544

379

742

1112

1340

292

1061

1180

1124

698

876

1471

1195

1195

0

1397

299

935

820

319

95

1171

855

395

152

920

1483

421

421

0

1302

215

604

640

1343

1203

990

1062

138

975

162

1483

1061

1061

0

264

408

907

1421

487

226

897

1365

1434

749

1481

1489

1211

1211

0

556

88

270

1432

1470

412

126

518

949

6

582

1493

164

164

0

704

518

340

810

833

1474

846

704

592

817

152

1493

488

488

0

1016

1446

1266

958

950

854

799

1103

245

633

690

1499

941

941

0

981

1381

1464

692

260

963

1104

557

22

1084

634

1499

1172

1172

0

1375

855

1059

635

118

1181

1408

469

1232

1096

1

1511

934

934

0

953

1124

161

281

787

1217

569

997

23

524

976

1523

1032

1032

0

1478

524

1315

132

326

23

62

1499

1183

1429

309

1523

1246

1246

0

646

83

120

916

960

240

680

604

78

111

1322

1531

472

472

0

574

1110

1386

467

1395

180

765

1143

1155

164

1241

1531

1238

1238

0

1323

1331

401

904

724

1315

853

926

280

731

835

1549

855

855

0

1003

313

1545

254

1010

256

1073

197

1028

586

448

1549

1069

1069

0

1248

215

543

885

1211

194

1459

585

265

1319

444

1553

392

392

0

588

1267

615

1068

1300

144

1149

1018

230

347

52

1553

568

568

0

321

774

1018

641

1413

1423

1035

1369

225

199

875

1559

1454

1454

0

56

668

1379

798

1209

98

538

701

963

826

19

1571

1265

1265

0

116

859

989

111

649

1

538

780

6

1080

201

1579

603

603

0

709

1177

1270

1286

1092

1305

592

55

1000

1327

1496

1579

906

906

0

201

345

1225

73

749

532

134

1381

1115

754

24

1579

1235

1235

0

619

916

1548

1353

1051

681

1411

487

199

1283

289

1597

453

453

0

473

345

564

567

998

205

1548

1152

1016

148

499

1601

1420

1420

0

1

1562

600

336

214

1199

81

638

1296

384

139

1607

874

874

0

669

1209

508

82

402

146

1188

450

643

441

92

1607

1253

1253

0

64

1021

489

1135

786

892

1418

1564

1437

326

1497

1613

35

35

0

359

1194

748

952

514

222

858

510

851

401

1067

1613

1225

1225

0

935

1332

636

1408

745

906

434

185

333

645

329

1619

371

371

0

37

1339

439

801

1251

1424

19

782

729

1067

226

1619

536

536

0

22

116

95

1380

1340

394

1364

1198

1129

710

24

1621

558

558

0

256

278

405

1138

1452

564

925

313

1599

732

636

1621

746

746

0

1560

1116

604

652

1436

1356

39

1370

1253

486

1301

1627

923

923

0

400

1481

342

1080

1053

842

1070

1303

1240

146

1598

1657

427

427

0

1511

620

1647

1265

1649

510

96

739

1301

333

648

1657

1481

1481

0

1616

369

1222

183

464

566

254

292

475

739

177

1663

709

709

0

1426

1234

998

320

1239

271

173

352

16

68

1158

1667

463

463

0

59

1534

373

1039

315

1371

261

968

884

1362

295

1669

221

221

0