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1. A Taylor-/powerseries expression for the Γ-("gamma")-function 

The Γ-("gamma")-function as generalization of the factorial-function is often defineda) by the 

Euler-integral 

  ∫
∞

−−=Γ
0

1)( dtetz
tz  

A reference for the taylorseries is not easily obtained –for instance in the "handbook of mathe-

matical function" [A&S] we get a lot of other representations and the taylorseries only in numeri-

cal approximation of a handful of coeffcients – and only for 1/ Γ(x)  

However some software like "Maxima" or Wolfram's mathematica site give exact expressions – 

but what a highly complicated structure of its coefficients do we encounter: (Laurent-expansion 

of the gamma-function) 

 Series(Gamma(1+x),x)=  

 

 

 http://www.wolframalpha.com/input/?i=Series+Gamma%281%2Bx%29  

 

The software Maxima gives the same in terms of the zeta-function instead of the derivatives of the 

psi; however, the zeta at even arguments are given a powers of π² and so I had to rework this be-

low. 

 taylor(gamma(1+x),x,0,4); 

 

 
1 - %gamma x  
 
                 2      2   2  

        (6 %gamma  + %pi ) x   
      + ---------------------  
                 12            
 
       
                  3      2                      3    
         (2 %gamma  + %pi  %gamma + 4 zeta(3)) x     
       - ----------------------------------------    
                            12                       
 
       
                   4         2       2                             4   4 
         (20 %gamma  + 20 %pi  %gamma  + 160 zeta(3) %gamma + 3 %pi ) x  
       + --------------------------------------------------------------- 
                                       480 
       

 

 output by software "Maxima" at sourceforge,  

 

 

                                                 
a)

See for instance [A&S], [NIST] or [WeissMW]  
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Here I needed guesses concerning the ambiguities when powers of π² are decomposed: for in-

stance π6 can arbitrarily be decomposed in terms of ζ(2)3, ζ(4)* ζ(2) and ζ(6) . I arrived at the fol-

lowing provisorical representation: 

 

=+Γ )5,0,),1(( xxtaylor  

...

!5

)5(24)2()3(20)2(*5*3)4(5*6)3(10*2)2(10

!4

)2(*3)4(*6)3(4*2)2(6

!3

)3(1*2)2(3

!2

)2(1

1

5
2235

4
224

3
3

2
2

+

++++++
−

++++
+

++
−

+
+

−

x

x

x

x

x

ζζζγζγζγζγζγ

ζζγζγζγ

ζγζγ

ζγ

γ

 

  

 

 

 

 

This still rather complicated expression can be refined to get a memorizable description. Let us 

define some concise notation for repeating patterns in the above: 
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and let us introduce an umbral-like operation for multiplication of zk with the same index k: 
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Finally let us remove the alternating signs at powers of x by rewriting this for Γ(1-x). Then we can 

express that powerseries for Γ(1-x) as  
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This can even be made more compact with a recursive notation with formal coefficients c0,c1,c2,… 

to arrive at the usual powerseries-notation: 

 ∑
=

=−Γ
inf

0

*)1(
k

k

k xcx  

where 
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The construction of the ck-coefficients follows an additive partitioningscheme: the new term at 

each new index contains the references to zetas, its powers and division by factorials by the addi-

tive partitions of the index; where indexes are working additive and exponents with indexes are 

multiplicative. 

 

 

Additional notes: 

a) The reciprocal of the gamma can then be expressed by a simple pattern of change of signs: 
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 Here I do not yet have the recipe how to determine the signs in the parentheses 

 

 

 

 

b) Reordering of summation Γ(1-x) in 
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gives also 
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c) The formal powerseries for Γ(1+x) Γ(1–x) has a special simple form 
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where η(k) is Euler's zeta ζ(k) with alternating signs. Numerically the coefficients tend very soon 

to 2 since η(2k)->1 when k->inf . The connection to the sine-function was already shown by Euler. 

Many more different representations and functional relations are known and easily available in 

articles online in the internet. a) 

 

 

                                                 
a)

 For instance I like much the introductory article by P. Sebah/X. Gourdon "Introduction to the Gamma-function", 2002  (see 

[SeGou]), and also two nice historical reviews (see [Davis], [Gronau]) 
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2. Decompositions of the Gamma based on numerical heuristics 

2.1. Looking at the powerseries for Γ(1+x) numerically 

My initial intention with all this was to look at the powerseries for Γ(1+x) using Pari/GP, a soft-

ware which is primarily designed for numerical work. This gave the following numerical expres-

sion for the powerseries for Γ(1+x):  

 

gamma(1+x) = 1 - 0.57721566*x + 0.98905600*x^2 - 0.90747908*x^3  
  + 0.98172809*x^4 - 0.98199507*x^5 + 0.99314911*x^6 - 0.99600176*x^7 
  + 0.99810569*x^8 - 0.99902527*x^9 + 0.99951566*x^10 - 0.99975660*x^11  
  + 0.99987827*x^12 - 0.99993906*x^13 + 0.99996952*x^14 - 0.99998475*x^15 
  + … 
  + 1.0000000*x^60 - 1.0000000*x^61 + 1.0000000*x^62 - 1.0000000*x^63  
  + 1.0000000*x^64  
  + …  

 

It is much interesting, that the complicated exact definition leads to such a regular expression: the 

most surprising fact is that the absolute value of the coefficients approach the constant values (+ 
and –) 1 very fast. 

A first thought is then, that the range of convergence for this series is like for the geometric series 

or that for the (mercatorseries of the) logarithm log(1+x) is |x|<1 so we can analoguously com-

pute Γ(y) for 0<y<2 by means of that powerseries.  

Such small range of convergence limits the usefulness of a powerseries much, but because of the 

simple functional relation between the unit-intervals Γ(1+x) = x Γ(x)  that series can still be used 

as basis for the computation of the whole range of positive reals. 

 

But while this characteristic limits the value of the powerseries-representation it triggers another 

question: what if we "reduce" the gamma-function by some other functions g(x) whose power 

series shows a similar shape but whose values at x are known in closed form (or easily and well 

approximated) and if we look at the residual function r(x) = Γ(1+x) – g(x) which is then defined by 

the subtraction of the two formal powerseries? 
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2.2. Example 1: reducing gamma by sum of zetas: r1(x) = Γ(1+x) – z(x) a) 

For instance, the sequence of ζ(k) for k=2..inf converges quickly to 1; so that these zetas can be 

used as coefficients of a power series z(x) with alternating signs: 

 ∑
=

+−=
inf

0

*)2()1()(
k

kk
xkxz ζ  

Then the difference-function as formal difference of the two taylor-series-representations writing 

TTTT (f(x)) for the taylorseries-representation of a function f(x) 

 ))(())1(())(( 1 xzxxr TTTTTTTTTTTT −+Γ=  

we get the residual taylorseries r1(x)  

r1(x) = -0.64493407 + 0.62484124*x - 0.093267238*x^2 + 0.12944868*x^3  
 - 0.035614975*x^4 + 0.026354208*x^5 - 0.010928242*x^6 + 0.0060066324*x^7  
 - 0.0028888813*x^8 + 0.0014689210*x^9 - 0.00073043048*x^10  
 + 0.00036611584*x^11 - 0.00018297682*x^12 + 0.000091524030*x^13  
 … 
 + 0.0000000013969831*x^29 - 0.00000000069849166*x^30  
 + 0.00000000034924588*x^31  
 + … 

 

The above sum-of-zetas z(x) gives rational values for positive integer x; we have 

 z(x) = h1(x)/x 

where h1(x) are the harmonic numbers of order 1:  

 h1(1) = 1  
 h1(2) = 1+1/2 = 3/2   
 h1(3) = h1(2)+1/3 = 11/6  
  …  

 

Thus also r1(x) gives rational values at that positive integer parameters x: 

 x=0  �  r1(x) = 0! – ζ(2)   
 x=1 �  r1(x) = 1! – 1  =1! – 1/2 – 1/2 
 x=2 �  r1(x) = 2! – 3/4  =2! – 1/2 – 1/4 
 x=3 �  r1(x) = 3! – 11/18  =3! – 1/2 – 1/9 
 x=4 �  r1(x) = 4! – 25/48  =4! – 1/2 – 1/48 
 

However, having the explicite symbolic description for the taylorseries of gamma(1+x) as in chap 

1 this is no more too interesting. 

                                                 
a)

 I've found this idea somewhere reading online-material from the internet. Unfortunately I do not remember the source. I'll 

add the source if I find it again 



 "Uncompleting"  the gamma-function S. -8- 

Exercises and heuristics with special functions  Mathematical Miniatures 

2.3. Reducing Γ(1+x) by a sum of geometric series: r2(1+x)= Γ(1+x)–g(1+x)  

A sharper approximation to the powerseries of the gamma-function gives a sum of geometric se-

ries of consecutive parameters. Let's begin with the taylor-series of Γ(1+x): 

taylor(gamma(1+x) ,x) 
 
= 1              - 5.7722 E-1*x   + 9.8906 E-1*x^2 - 9.0748 E-1*x^3 + 9.8173 E-1*x^4  
- 9.8200 E-1*x^5 + 9.9315 E-1*x^6 - 9.9600 E-1*x^7 + 9.9811 E-1*x^8 - 9.9903 E-1*x^9 + O(x^10) 

 

Compare this with the powerseries –representation of 1/(1+x): 

taylor( 1.0/(1+x),x)   
 
= 1.0000 E0     - 1.0000 E0*x   + 1.0000 E0*x^2 - 1.0000 E0*x^3 + 1.0000 E0*x^4  
- 1.0000 E0*x^5 + 1.0000 E0*x^6 - 1.0000 E0*x^7 + 1.0000 E0*x^8 - 1.0000 E0*x^9 + O(x^10) 

 

After subtraction we get 

taylor(gamma(1+x),x) – taylor(1.0/(1+x),x)  
 
= 0.0             + 4.2278 E-1*x    - 1.0944 E-2*x^2  + 9.2521 E-2*x^3  - 1.8272 E-2*x^4  
+ 1.8005 E-2*x^5  - 6.8509 E-3*x^6  + 3.9982 E-3*x^7  - 1.8943 E-3*x^8  + 9.7473 E-4*x^9  
- 4.8434 E-4*x^10 + 2.4340 E-4*x^11 - 1.2173 E-4*x^12 + 6.0936 E-5*x^13 - 3.0482 E-5*x^14  
+ 1.5247 E-5*x^15 - 7.6255 E-6*x^16 + 3.8134 E-6*x^17 - 1.9069 E-6*x^18 + 9.5353 E-7*x^19  
+ O(x^20) 

 

Here we observe, that we seem to get a converging sequence of coefficients, and also that the ratio 

of consecutive coefficients is roughly –1/2 – and inspecting more terms indicates that we have 

indeed something very similar to the powerseries for 1/(1+x/2)/2.  

So we subtract that (with adapted sign): 

taylor(gamma(1+x),x)  - taylor(1.0/(1+x),x) + taylor(1/(1+x/2)/2,x)  
 
= 5.0000 E-1      + 1.7278 E-1*x    + 1.1406 E-1*x^2  + 3.0021 E-2* x^3  + 1.2978 E-2 *x^4  
+ 2.3799 E-3*x^5  + 9.6161 E-4*x^6  + 9.1990 E-5*x^7  + 5.8819 E-5 *x^8  - 1.8301 E-6 *x^9  
+ 3.9373 E-6*x^10 - 7.3813 E-7*x^11 + 3.4163 E-7*x^12 - 9.9363 E-8 *x^13 + 3.5342 E-8 *x^14  
- 1.1488 E-8*x^15 + 3.8736 E-9*x^16 - 1.2867 E-9*x^17 + 4.2976 E-10*x^18 - 1.4323 E-10*x^19  
+ O(x^20) 

and arrive at a formal powerseries whose coefficients diminuish even sharper. This means, that 

the range of convergence for this series has increased.  

 

 

But we find much more: now seemingly we have a ratio of roughly –1/3 between consecutive 

coefficients; and consequently we try, whether we can repeat that type of subtraction, possibly up 

to infinity. 
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The function g(1+x)  

Indeed it seems that we can proceed, and this allows to formulate the following ansatz: 

 write TTTT (f(x)) for the taylor-expansion of some function f(x) and define 
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so that finally 
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Usually, when we look at formal powerseries, we say that we have no concern about convergence. 

But here we sum infinitely many formal powerseries, so the convergence for each resulting coef-

ficient must be shown. However – here this is easy: the factorials in the denominators make sure, 

that the sums of the coefficients at like powers of x are convergent, and all coefficients of g(1+x) 

are thus well defined.  

 

 

The sumalt()-procedure in Pari/GP gives the following result: 

sumalt(k=0,(-1)^k*(taylor(1/(k+1+x)+O(x^20) ,x)/k!) \\ this defines taylor(g(1+x))   
 
= 0.63212      - 0.79660*x    + 0.89121*x^2  - 0.94308*x^3  + 0.97066*x^4  
- 0.98502*x^5  + 0.99241*x^6  - 0.99617*x^7  + 0.99807*x^8  - 0.99903*x^9  
+ 0.99951*x^10 - 0.99976*x^11 + 0.99988*x^12 - 0.99994*x^13 + 0.99997*x^14 
- 0.99998*x^15 + 0.99999*x^16 - 1.0000*x^17  + 1.0000*x^18  - 1.0000*x^19  

+ O(x^20) 
 

 

This powerseries has obviously convergence-radius smaller than 1; but the interesting aspect is, 

that if we use the series of the closed-forms for evaluation, then the convergence-radius is infinite 

excluded the x from the set of negative integers. So for the numerical evaluation we always use: 
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or some better converging expressions. 
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The function r2(1+x) 

The above coefficients are very near to that of the taylorexpansion of Γ(1+x); if we now define the 

residual function r2(1+x) by subtracting the coefficients of the formal powerseries for Γ(1+x) and 

g(1+x): 

 

 TTTT (r2(1+x)) = TTTT (Γ(1+x)) – TTTT (g(1+x)) 

 

we find a taylor-series whose coefficients decrease quickly to zero; the convergence is much 

faster than that in the series r1 of the previous example.  

 

Here is the beginning of the taylor-series for r2(1+x): 

 r2(1+x) = 0.36787944 + 0.21938393*x + 0.097843197*x^2 + 0.035603492*x^3  
  + 0.011070895*x^4 + 0.0030276112*x^5 + 0.00074265830*x^6  
  + 0.00016575626*x^7 + 0.000034031395*x^8 + 0.0000064826098*x^9  
  + 0.0000011537135*x^10 + 0.00000019293744*x^11 + 0.000000030464914*x^12  
  + 0.0000000045607254*x^13 + 0.00000000064961995*x^14  
  + … 
  + 1.2448664 E-25*x^30 + 1.0172319 E-26*x^31 + O(x^32) 

 

Heuristics suggest,  

• that the coefficients decrease with some hypergeometric rate, thus this series seems to be 

entire (all poles of the gamma are captured by g(1+x)) and  

• that the function has a zero only at x=–infinity.  

• (obviously) the function has r2(1)= 1/e  

• that the function has a functional equation: r2(x+1) = x∙r2(x) + 1/e  

• that the quotients of r2 at consecutive x form a well known sequence r2(k)/r2(k-1) begins 

[1, 2, 5, 16, 65, 326, 1957,…]  a) 

The following plot shows, that the poles of the gamma-function are captured by the subtraction of 

the g(1+x)-function: the function r2(1+x) seems to be very smooth in the shown area: 

Plot 1. 

  

abs(Γ(1+x)) abs(1+r2) 

 

                                                 
a)

 [OEIS] See more info in the OEIS: http://oeis.org/A000522 "Total number of arrangements of a set with n elements: a(n) = 

Sum_{k=0..n} n!/k!" 
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That this is not completely smooth shows the separation of the plot into that of the real and that 

of the imaginary part of r2(1+z): 

 

Plot 2. 

  

Re(r2) Im(r2) 

 

2.4. The function r2 is in fact the "incomplete gamma"  

It was bit of surprise when I came across the wolframalpha-site and explored the whereabouts of 

Γ(1+x), g(1+x) and r2(1+x). I was curious what the term "incomplete gamma function" would 

mean – and actually one of the series-representations for the (upper) incomplete gamma 

("gamma(1+x,1)" in the notation of Mathematica) met the sum-expression which I used for r2: 

(see Wolfram alpha "Series(gamma(1+x,1))*1.0") 

 (Incomplete gamma): 

 

 

 

 

 http://www.wolframalpha.com/input/?i=series+gamma%281%2Bx%2C1%29  

 

and the last equation is identical to the definition by subtraction of the formal powerseries g(1+x) 

from Γ(1+x) as given above in the paragraph on g(1+x): 

 r2(1+x)  = Γ(1+x) – g(1+x)  
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3. Further properties of the function r2(1+x) / incomplete Γ 

a) approximation to Γ(x) at positive real values 

For positive larger values of x the value of the g()-function vanishes quickly and accordingly the 

new function r2(x) converges there quickly to the gamma-function. 

A couple of values are (sequence of numerators see also [OEIS]1): 

 r(1) =      1/e  =  0*r(0) +1/e ~ 0.37 
 r(2) =      2/e  =  1*r(1) +1/e ~ 0.74 
 r(3) =      5/e  =  2*r(2) +1/e ~ 1.84 
 r(4) =   16/e  =  3*r(3) +1/e ~ 5.89 
 r(5) =   65/e  =  4*r(4) +1/e ~ 23.91 
 r(6) = 326/e  =  5*r(5) +1/e ~ 119.93 
 … 
 

Here is an overlay; the green curve is Γ(x), the red curve is r2(x)  

Plot 4: 

 

 

green curve: gamma-function 

red curve: r2-function 

 

 

b) functional equation 

Surprisingly the function r2 seems to have an interesting functional equation: 

 r2(1+x) = x∙r2(x) + 1/e  

This is so far simply heuristic. Obviously at x=0 we have that r2(1+x) = 1/e as indicated by the con-

stant term in the powerseries-expansion. (I have not analyzed the reason for this behaviour yet.) 

If we formulate the family of such functional equations, distinguished only by the constant pa-

rameter, say  

 rc(1+x) = x∙rc(x) + 1/c  
 rd(1+x) = x∙rd(x) + 1/d  

then all that functions are only scalings of each other: 

 c*rc(x) = d*rd(x)  

All these functions have the property that they are entire and have no zero. It is remarkable, that 

the Euler-gamma-function is then the limit  rm(x) where in the constant term m->inf or 1/m=0  

                                                 
1
 [OEIS] http://www.research.att.com/~njas/sequences/A000522 
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4. The log of Γ from the viewpoint of an indefinite sum… (Draft-state) 

Meditating this way on the Gamma-function it comes to mind, what might come out if I develop 

the interpolation of the factorial the same way as I did it other functions, say iteration of polyno-

mials and exponentiation – and see, whether this will lead to the gamma- or another function. 

The iteration of the factorial is 

 (k+1)! = k! * (k+1)  

and if we take the logarithm it converts to a sum-expression: 

 ln((k+1)!) = ln(1) + ln(2) + … ln(k) + ln(k+1) 

 

 

 

This looks like an expression designed for iteration… It reminds of the computation of sums of 

like powers which was solved by means of the bernoulli-/zeta-polynomials. So one could imagine 

a function 

 g(k) = ln(k) + ln(k+1) + ln(k+2) + ...  

and then 

 ln(Γ(k)) = g(1) – g(1+k) 

Then to generalize this even to fractional k we needed some analogon to the closed form for the 

sum of integers, but such a closed form is not known for sums of logarithms.  

 

Indefinite sum 

However, summing with fractional bounds for the index is already a reasonably established exer-

cise; part of that technique is the concept of "indefinite sum".  

This requires an operator which performs the iteration by one step of the index. So we may ask 

for the operator for the indefinite sum ln(x)->ln(1+x) , or said differently: with a unknown transfer 

function Φ we want: 

 ln(1+x) = Φ -1(1+ Φ(ln(x))) 

and one immediate solution for the function Φ(x) is Φ(x)=exp(x) .  

So the associated operator has the composition  

 f: ln • add(1) • exp  
or f(x) = ln(1+exp(x)) 

Expressed as function f(x) it has the taylorseries 

 f(x) = ln(1+exp(x)) =  ln(2) + ......
!64

1

!48

1

!24

1

!12

1 642

+−⋅+⋅−⋅+⋅
xxxx

 

which seems to be 

  f(x)=∑
=

−inf

0 !

)1(

k

k
x

k

kη
 

   where η(n) is the alternating version of ζ(n).  

With this we have 

 ln(1+x) = f( ln( x ) )  
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I work with Carlemanmatrices/matrixoperators which are assigned to some function; so this is 

the top-left aspect of M, the matrix-operator for f(x): 

 M= 

 

 

 If we extract the reciprocal factorials by leftmultiplication with   

 dF = diagonal(0!,1!,2!,…) we see the η-values at integer arguments in  
the second column:  
  η(1)=ln(2), η(0)=1/2, η(-1)=1/4, η(-2)=0, …  

dF*M= 

 
 

 

Indeed, if we use the matrixoperator M for a dotproduct, we get the expected results: 

 V(ln(1))~ * M  =  [1, ln(2), ln(2)2 , ln(2)3 , ln(2)4 ,…]~   
   = V(ln(2))~  
 
 V(ln(2))~ * M  = [1, ln(3), ln(3)2 , ln(3)3 , ln(3)4 ,…]~   
   = V(ln(3))~ 
 
and in general 

 V(ln(x))~ * M  = [1, ln(x+1), ln(x+1)2 , ln(x+1)3 , ln(x+1)4 ,…]~  
   = V(ln(x+1))~    
 

 

A telescoping sum 

Clearly, if we write 

    

     V(ln(1)) 
 + V(ln(2)) 
 + V(ln(3)) 
 + ... 
 + V(ln(x)) 
 

* (M – I )= 

    V(ln(2))~ – V(ln(1))~ 
   + V(ln(3))~ – V(ln(2))~ 
   + V(ln(4))~ – V(ln(3))~ 
   +.... 
   + V(ln(x+1))~ – V(ln(x))~ 
 

=   V(ln(x+1))~ – V(ln(1)) ~ 

 

 =  [0,ln(x+1), ln(x+1)2, …]~  

we get that 
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Here we ask, whether we can invert that computation:  

Can we get 

 ( ) ∑
=

=−+
x

k

xVSVxV
1

))(ln(*)0())1(ln(  

where S must somehow be the inverse of the non-invertible (M-I)  

 

Unfortunately, the matrix (M-I) cannot be inverted since the first column is completely zero 

(and/or there is one eigenvalue zero). 

Here we try one approach, which I became aware of by the slog-matrix of Andy Robbins. For the 

slog-matrix (for the inverse of the tetration-function) he proposes to discard simply the first col-

umn and try, whether the inverses of the remaining squared truncations "converge" with increas-

ing size.  

If we do this here, denoting the matrices where the first column is deleted and a trailing column is 

appended as M* and I*, several times with increasing dimension, we seem to approximate to some 

definite matrix S. (Since we cutted the leading zero-column in M-I we insert a leading zero-row in 

S). The top-left segment of S approximates with increasing dimension to: 

S=(I*–M*)-1= 

 

 

We see two immediately interesting aspects here: 

 the first column (index c=0) gives just the coefficients for the function exp(x)-1  

 in the second column, the second entry 0.5772157 seems to be just the Euler-Gamma 

 

In fact, we get by leftmultiplication with a vector V(x) (for x in a range of convergence)  

 *  

V(ln(3))~-V(ln(2))~  =  

 =  
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 * S  

V(ln(5))~-V(ln(1))~  =  

 

=  

 

Heuristically we find, that the coefficients in the 2nd column (columnindex c=1) equal just that of 

the powerseries of 

 g1(x) = ln(Γ(exp(x))) 

  as given by the Pari/GP-call of lngamma(exp(x))  

 

 

Now to construct the analogy to the Hurwitz-zeta-differences, we assume a value Λp for the infi-

nite sum of p'th powers of logarithms of consecutive bases (which we shall actually try to deter-

mine later): 

 Λp = ln(1)p + ln(2)p + ln(3)p + ... = ∑
=

inf

1

)ln(
k

p
k  

If we can define such values meaningfully, then we can also define the functions 

 Tp(n) = Λp – Sp(n) = ln(n+1)p + ln(n+2)p + ln(n+3)p + ...  

from where then 

 Tp(m) –  Tp(n)  =   ln(m+1)p + ln(m+2)p + ... + ln(n)p  

and practically 

 Tp(0) –  Tp(n)  =   ln(1)p + ln(2)p + ... + ln(n)p  
   = Sp(n) 

Because the functions Tp(n) and Sp(n) differ only by the constant and the sign, the power series for 

Tp(n) has the same coefficients as we have already determined for Sp(n), only the signs are in-

verted and the constant is appended. So we get the matrix T:  

 

T =    

 

Now to have  

 T1(0)  = V(0)~ * T[,1]  
  = 1* Λ1   +   0*0.57721... +   0 * -0.5338592 +  0 * ….  
  = ln(1) + ln(2) + ln(3) + ...  

we need that Λ1 equals that sum of logarithms. 
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So: how can we assign some value to the Λp ? 

There are at least two ways to achieve this. 

• Divergent sumnmation/Ramanujan summation 

According to the idea of Ramanujan-summation we use the power series of ln(1+x) and re-

place each power of xk by the according zeta-value ζ(-k)=1k+2k+3k+… as the representation of 

the sum of all x € N . Also we need some integral. This reads then formally 

 ∑∫
=

− −−
+=Λ

inf

1

1
0

1
1

)()1(
)ln(

k

k

k

k
dtt

ζ
  (Ρ)  

The integral evaluates to c1=1, and for the divergent sum (let's denote it by s1) we must apply 

a summationmethod stronger than, for instance, Eulersummation. I've a specially taylored 

method (however unproven) according to Nörlund means which gives for the sum s1 ap-

proximately - 0.0810614667953. The value of this  

 Λ1 = c1+s1  
       ~ 1 - - 0.081061  
       ~ 0.918938533205 

• Derivatives of the zeta 

There is another representation of the sums of logarithms, even of powers of logarithms and this 

are the derivatives of the zeta at zero-argument. The Ramanujan-sum agrees with the sum of the 

logarithms as defined by that derivatives; for p=1 we have even a closed form in terms of π and 

logarithm only: 

 Λ1 = - ζ '(0) = 0.5 * ln( 2 π ) ~ 0.918938533204672741780329736406 

The closed forms for the higher derivatives become much complicated; but expressing the zeta as 

a power series/Laurent series with the help of the Stieltjes-constants allows a very simple com-

putation of that derivatives: 

 ∑
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and the p'th derivatives are 
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The representation of the sums of powers of logarithms by derivatives of the zeta is 

 ∑
∞

=

−
=

1

)( ))ln((
)(

k
z

p
p

k

k
zζ  

Setting z=0 we get the "sum of like powers of logarithms" as 

 )0()1()ln( )(

1

pp

k

p
k ζ−=∑

∞

=

 

With this the power series (which uses the Stieltjes-constants) reduces to 
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and 
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Here the sum converges very fast and allows many digits accuracy with few terms depending on 

the accuracy of the Stieltjes-numbers .  

The first few values are: 

 Λ1 ~        1 – 0.0810614667   ~       0.91893853321 
 Λ2 ~ –    2 – 0.0063564559   ~ –    2.00635645591 
 Λ3 ~       6 + 0.0047111669   ~       6.00471116686 
 Λ4 ~ – 24 + 0.0028968119 ~ – 23.9971031880   
 …  

 

 

 

Finally, it may be of interest to look at the sum of all Λ1 Λ2 , Λ3, …  . 

The sum of all cp is 

 

2323...0.59634736-1

7677...0.40365263

)ln(1

)ln(
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where the 0.59634… is the Gompertz-constant and represents the divergent series 

 0.59634… = 0! – 1! + 2! – 3! + … - …  

The sum of the fractional parts seems to be divergent. With a Noerlund-summation I found an 

approximation at about 

 -0.080906...  2 
  

 

Gottfried Helms, 8'2012 (first version 08'2010) 

 

                                                 
2
 In my previous version I documented the value to more precision -0.0809057233444163259461536334873... but my 

different summation routines might be not completely compatible with the number of estimated correct digits. I'll update 

the value later after external confirmations. 
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