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Binomial = exp ("counting") 

 

Function Gp,1..18(x) =              (x=-2..+2, y=-2..+2) 

 

x
=
- 
1
/2

 



Accessing Bernoulli-Numbers by Matrixoperations S. -2- 

Accessing Bernoulli-Numbers by Matrixoperations 

1. Introduction 

There is a lot of articles available on bernoulli-numbers - so: why another article? 

It was my private fun and interest, to learn about the problems and applications of bernoulli-

numbers; also I like to access such problems with the tools of matrix-algebra, which is suitable 

for many problems, for instance puzzles in the field of "recreational mathematics". The results, 

which I'm to present here, are not really new in most cases; but I find some expressions, which 

are not really prominent in most articles, to say the least; so some seem new and even surpris-

ing in their simplyness. 

The most interesting results, that I achieved were: 

• The binomialmatrix P is expressible by the EXP()-Function applied to a vector of natural num-

bers 

• Polynomials, which are constructed of the coefficicients from the binomialmatrix P , have roots 

at complex x of the form x=1/2 + i*tan(t), where t represent equidistant points on the circle 

• The bernoulli-numbers can be found in the first eigenvector of the signed binomialmatrix Pc 

(=P*J) bzw Pr; (=J*P); the matrix of eigenvalues is just the unit-matrix J with alternating signs 

• The frequently discussed definition of the bernoulli-number ß1 as  + or - 1/2 (here as bernoul-

livectors Bp resp. Bm) can be resolved as specific solution of the same systematic concept (like 

transposed solutions in matrixalgebra following from the non-commutativity) and formulae, 

based on that definitions, can be translated from one to another (as far as the matrix-concept 

reaches) 

• The set of eigenvectors (in the following named as G-matrix) contains the coefficients of the 

integrals of the bernoulli-functions; this integrals provide directly the Bernoullian sums-of-

powers for natural arguments, but also common recursive definitions and remarkable graphs for 

real-valued arguments. 

Most results were primarily heuristical; the relations to the known formulae are usually not 

easy to recognize; it was useful, that in at least some handbooks some tables with actual printed 

coefficients were provided, so that besides the explication of the matrix-formulae also the re-

sults could be compared. 

For an experienced number-theorist that all may possibly be known (and much is, as I already 

learned) -  in the case, the reader of this article belongs to this category, he/she might feel at 

least a philatelistic pleasure of this small collection of views... 

Perspectives: 

The matrix-tool is immanently restricted by the natural-numbered indexing of matrix-rows. 

Given, that the matrix row n provides the coefficient of the power-sum woth exponent n, then the 

same is not obvious with rational n or even real or complex-valued exponents x. This problem, as 

well as the now possible parametrizition of the eigenvalue-matrix J (which leads to possibly in-

teresting variants of the binomial matrix P) is subject to further study. 

One of the most triggering impulses was ironically a tiny error, which appears in many inter-

net-ressources; a small, but significant one. 
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2. A common equation of recursion (containing a significant error) 

In the webpage "bernoullinumbers" in [mathworld] the known recursion for the computation 

of bernoullinumbers is given as 

( )[ ] [ ]nn
BB =+1   (Eq 31) 

To keep the following text consistent I reformulate the symbols of this equation and the order 

of the terms as:  

(2.1) ( )[ ] [ ]nn
ßß =+1  

where, as mentioned in that webpage, the  i'th powers i=0..n of ß are to be replaced by the  i'th 

bernoulli-numbers: ß[i] -> ßi  

If one resolves this recursion and puts the rows for running n together, then the following 

scheme evolves: 

ß0 = 1*ß0  
ß1 = 1*ß0 +      1*ß1  
ß2 = 1*ß0 +      2*ß1       + 1*ß2  
ß3 = 1*ß0 +      3*ß1       + 3*ß2  + 1*ß3  
... 
ßn = 1*ß0 + ch(n,1)*ß1  + ch(n,2)*ß2       .... + ch(n,n-1) ßn-1  + 1*ßn  
 

 where "ch(n,k)" indicates the binomial coefficients: 

(2.2) ( )
( )!kn!k

!n
)

k

n
(k,nch

−
==  

This scheme can be seen as matrix-formula, where B is the columnvector of the bernoulli-

numbers and P is the lower triangular matrix of coefficients, which represents the Pascal-

triangle.  

Thus the given recursion says: 

(2.3) B*PB=  
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- an interesting equation, which has the form of an eigenvector-problem which can also be ex-

pressed as ("O" indicates a zero-column-vector): 

(2.4) ( ) B*IPO

BB*PO
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From the 2'nd row in (2.4) however, ß0 needs to be zero, and from that follows, that in the 3'rd 

row also ß1=0 etc.; in short: the vector of bernoulli-numbers B needs to equal the zero-vector; 

but which is not true. 
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3. Two versions Bm and Bp of bernoulli-numbers? 

The mistake is in the recursion-equation (2.1), and obviously with n=1. From (2.1) it is: 

(3.1)   ß1 = 1* ß0 +      1* ß1  

The first bernoulli-number ß0 is defined as 1, the 2'nd ß1 as  -½ . Plugged into the equation we 

have a contradiction: 

(3.2) -½ = 1* 1  +      1* (-½)  = ½    // contradiction! 

For row n = 1 the equations needs to be: 

(3.3a) (-1)* (1 + ß)[1] = ß[1] 

 or 

(3.3b) (1 + ß)[1] - 1 = ß[1]   

Since the following bernoulli-numbers with odd index are all zero, it is not obvious, whether 

this mistake should be corrected for all following odd-n bernoulli-numbers. But it seems from 

the following, that this is a wise assumption, since this leads to a useful and consistent repre-

sentation. 

Let I be the unitmatrix with 1 in the diagonal, always of the appropriate size, fitting the current 

matrixequation:  

(3.4) I := diag(1,1,1,1,...) 

and let J be the resp. diagonalmatrix with alternating signs: 

(3.5) J := diag (1,-1,1,-1,...)           from which    J*J = I  and J = inv(J) 

From this is (since only the sign of  ß1 in Bp and Bm are affected and is insignificant for all ß3 = 

ß5 = ß7 = ... = 0 ),  

(3.6) Bp = J * Bm          

       and  Bm = J * Bp 

The mistake can now simply be corrected by rewriting: 

(3.7) J * P * Bm = Bm   
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or, after reformulation of Bm into Bp   

(3.8) J*P *( J*Bp ) = (J*Bp) 

(3.9) (P*J)  * Bp = Bp   
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Since in J*P only the row-signs alternate and in P*J the signs in the colums, I introduce the 

shorthands for this variants: 

(3.10) Pr := J * P //signs of rows alternate 

 Pc := P * J //signs of columns alternate 

The following three notations are then correct and useful: 

(3.11.1)     Pr * Bm  = Bm 

(3.11.2)     Pc * Bp   = Bp 

 and since 

            Pc * Bp = (P*J) * Bp = P * (J*Bp) = P * Bm   

 one can also use the unsigned version of the binomialmatrix: 

(3.11.3)     P  * Bm  = Bp 

The two recursion equations read hence correctly: 

(3.12) 
( )[ ] [ ]

( )[ ] [ ]
p

nn

m

nnn

Bcomputetoßß

Bcomputetoßß

//1

//1)1(

=−

=+−
 

 

Table 3.1: Bm und Bp : vectors of the bernoulli-numbers: 

 

n Bm Bp I1 

0 
1 
2 
3 
4 
5 
6 
7 
8 

  1  
 -1/2 
  1/6 
  0  
 -1/30  
  0  
  1/42  
  0  
 -1/30  

  1  
 +1/2 
  1/6 
  0  
 -1/30  
  0  
  1/42  
  0  
 -1/30 

0 
1 
0 
0 
0 
0 
0 
0 
0 

 

Table 3.2: recursions  Pc * Bp = Bp and Pr * Bm = Bm 

Rek.1: (1 - ßp)
[n] = ßp

[n]  
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Rek.2: (-1)n*(1 + ßm)[n] = ßm
[n] 
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4. Computation of bernoulli-numbers by matrixinversion of (P-I) 

Using this corrected recursion-formula the bernoulli-vector can now be computed. the follow-

ing definition helps for notation: 

(4.1) I1 :=   Bp - Bm =  {0,1,0,0,....0}  

from (3.11.3)     P*       Bm  = Bp    

with (4.1)     P *   Bm  = Bm + I1 

 ( P - I )  Bm  = I1  

follows 

(4.2)  Bm  = inv( P - I ) * I1  

and the bernoulli-vector Bm can be found in the 2'nd column (i=1) of the inverted (P-I) - ma-

trix. Analoguously the bernoulli-vector Bp can be determined: 

from (3.11.3)  P*    Bm      =      Bp    

with (4.1)  P*( Bp - I1 ) =     Bp 

         Bp - I1  =  inv(P) * Bp 

              - I1  = (inv(P) - I) * Bp 

follows: 

(4.3)          Bp  = - inv( inv(P) - I) *  I1 

and the bernoullivektor Bp can be found in the 2'nd column (i=1) of the negative of the in-

verted (inv(P) - I) matrix. 

This computation however cannot immediately be done. By the subtraction of I the matrices P-

I as well as (inv(P) - I) are singular and cannot be inverted. 

(4.3.1) 
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But as it is easy to see, one can determine solutions for all bernoulli-numbers up to ßn, if the 

left-hand matrix has rows up to n+1; row 1 determines ß0, from that row 2 determines ß1 and 

so on. This means practically, that one has only to use the appropriate submatrix of a P-matrix 

with the highest row-number of n+1. 

The both matrices computed this way are denoted as Gp (resp. Gm) in the following. 

In the following formula P[n+1] indicates an extension of 1 row/column of the P-matrix, and 

the [r,c]-indexes show the then selected ranges of rows/columns: 

(4.4) Gm :=   inv((       P [n+1] - I)[1..n+1, 0..n]) 

(4.5) Gp := - inv(( inv(P)[n+1] - I)[1..n+1, 0..n]) 

If we remove the same first row from the column-vector I1
[n+1] as well, we get: 

(4.6)  I0 := {1,0,0...0}'  

and we are able to determine the bernoulli-vectors from the inverses Gp resp. Gm  

(4.7) Bp  = Gp  * I0     = Gp  [0..n, 0]  

(4.8) Bm = Gm * I0     = Gm  [0..n, 0] 

just by extraction of the first column from G.  
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5. J contains the eigenvalues, and Gm resp. Gp contain the eigenvectors of Pr 
resp. Pc 

The interesting news are hence, that Bp (resp. Bm), which are computed from the expanded 

matrix P[n+1], are just the first eigenvectors of the n-rowed matrix Pc (resp Pr). Analoguously, 

and much more interesting, this is true for the matrices Gp (resp. Gm), which contain the full set 

of eigenvectors each. 

Thus we have the following identities and properties: 

Let  

 P the lower triangular matrix of binomial-coefficients 

 J = diag(1,-1,1,-1...) the identitymatrix with alternating signs 

then 

(5.1) J = inv(J) 

(5.2) J * P * inv(J) = J * P * J =inv(P) 

 

(5.3) P * J = Pc  the binomialmatrix having alternating signs in columns 

(5.4) J * P = Pr the binomialmatrix having alternating signs in rows 

 

(5.5) Pc * Gp = Gp * J  or Pc = Gp *J * inv(Gp)  

(5.6) Pr * Gm = Gm * J or Pr = Gm *J * inv(Gm) 

 

(5.7) J        the diagonalmatrix of eigenvalues of Pc and Pr 

(5.8) Gp     the matrix of eigenvectors of Pc 

(5.9) Gm    the matrix of eigenvectors of Pr  

 

(5.10)  J *  Gp  J  = Gm  

(5.11)  J *  Gm  J  = Gp  

See a proof for this identity in the internet-conversation, copied to 

ProofOfGpBeingEigensystem.htm 

 

 

Table 5.1:  Gm and Gp  

Zl Gm , first 5 columns (0..4) Gp , first 5 columns (0..4) 

 
0 
1 
2 
3 
4 
5 
6 
 

 
      1      .     .     .     . 
   -1/2    1/2     .     .     . 
    1/6   -1/2   1/3     .     . 
      0    1/4  -1/2   1/4     . 
  -1/30      0   1/3  -1/2   1/5 
      0  -1/12     0  5/12  -1/2 
   1/42      0  -1/6     0   1/2 

 
      1      .     .     .    . 
    1/2    1/2     .     .    . 
    1/6    1/2   1/3     .    . 
      0    1/4   1/2   1/4    . 
  -1/30      0   1/3   1/2  1/5 
      0  -1/12     0  5/12  1/2 
   1/42      0  -1/6     0  1/2 
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6. The Binomial-Matrix and the Matrixexponential 

For me an amazing property of the binomial-matrix is, that it can be expressed as an matrixex-

ponential of an most elementary parameter: namely of a matrix consisting only of the sequence 

natural numbers 1..(n-1) in the first principal subdiagonal, which may be denoted here as T  

 

(6.1) P = exp ( T )  

Example: 
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A proof is in [Helms1] or more in detail in [Edelman]. 

 

 

 

7. Bernoulli-vectors and the Matrixexponential 

Using the matrixexpoential familiar formulae are popping up, if one replaces 

 inv(P)=  exp ( T )-1 = exp ( - T )  

and denotes the submatrix [1..n,0..n-1] of a matrix P[n+1] , reduced by one row/column, with 

the symbol :P : 

(7.1) Bm =   :( exp (    T ) - I)-1 * I0  

(7.2) Bp  =  -:( exp ( - T ) - I)-1 * I0  

which gives for Bm nicely visible the scalar term of the generatingfunction for the bernoulli-

numbers: 

 
( ) 1

1

−texp
 

and for Bp  

 
( )

( )
( ) 11

1

−
=

−−

−

texp

texp

texp
 

(see the formulae, for instance in [mathworld] or [A&S], where in the numerator also the pa-

rameter t occurs). 
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8. The structure of the remaining coefficients in the matrices Gm - and Gp  

Heuristicaly for small n the following -much plausible, but not yet analytically verified- repre-

sentation for the coefficients can be found. Here the row-/column-indices are understood as 

starting at zero (I use "r" for rows and "c" for columns):  

(8.1) [ ] [ ]cr
sc

r
cr mm −

+





= BG *

1

1
*,  

(8.2)  [ ] [ ]cr
sc

r
cr pp −

+





= BG *

1

1
*,  

 

Let the symbol "*#" denote an elementwise multiplication ("Hadamard multiplication") of two 

matrices of same dimension, then: 
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where the numerators (in left matrix) contain just the binomialmatrix P.  

Table 8.1: recall matrices Gm and Gp: 

Zl Gm , first 5 columns (0..4) Gp , first 5 columns (0..4) 

 
0 
1 
2 
3 
4 
5 
6 
 

 
      1      .     .     .     . 
   -1/2    1/2     .     .     . 
    1/6   -1/2   1/3     .     . 
      0    1/4  -1/2   1/4     . 
  -1/30      0   1/3  -1/2   1/5 
      0  -1/12     0  5/12  -1/2 
   1/42      0  -1/6     0   1/2 

 
      1      .     .     .    . 
    1/2    1/2     .     .    . 
    1/6    1/2   1/3     .    . 
      0    1/4   1/2   1/4    . 
  -1/30      0   1/3   1/2  1/5 
      0  -1/12     0  5/12  1/2 
   1/42      0  -1/6     0  1/2 

 

 

The rowsums in Gm equal zero and in Gp equal 1,  

 Gm*V(1) = V(0)  Gp*V(1) =  V(1) 

and thus also  

(8.3) [ ] [ ]∑
=

−==
z

s

mmzm szzß
1

,0, GG   [ ] [ ]∑
=

−==
z

s

ppzp szzß
1

,10, GG  

 

Here again we find known recursion-formulae for the Bernoulli-numbers , which differ by just 

2*ß1 = 1, reflecting the both definitions for ß1: 

(8.4.1) ∑
=

− 








+







−=

n

k

kn,mn,m *
kk

n

1 1
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0 ββ   ∑

=
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−=

n

k

kn,pn,p *
kk

n

1 1

1
1 ββ  
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9. The original problem of Jacob Bernoulli: "Powersums" - from Gp  

The computation of the powersums Sm,n = 1m + 2m + 3m + ... + nm is then a simple matrixmul-

tiplication using Gp. We need the Vandermondevector  

(9.1) V:= Vm(n) = { 1,n,n2,n3,...,nm} 

need only multiply to get the vector of all powersums S with the m and dimensions matching: 

(9.2) S := Gp * V(n) * n  

and find in row S[m] the sum of the m'th powers from 1 to n: 

Table 9.1: Powersums 

                Gp                 * V(3)*3 = S(3) 
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36
14
6
3

321
321
321
321

3
3
3
3

*

4/12/14/1.
.3/12/11/6
..2/11/2
...1

333

222

111

000

4

3

2

1

 

Table 9.2 the original problem of Jakob Bernoulli (Quelle:[MICH]) 
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10. Polynomials of the coefficients of the Binomialmatrix Pc 

If one uses the entries of the (signed) matrix Pc as coefficients for polynomials in x, then inter-

esting functions pop up. Let the Vandermonde -vector {1,x,x2,x3,...xz}'   = Vz(x) of the length 

z+1 

(10.1) Vz(x) = {1,x,x2,x3,...xz}' 

and define the polynomials in x using the coefficients of a fixed row from Pc  

(10.2) fm,z(x):=(PJ -  I)z*Vz(x) 

(10.3) fp ,z(x):=(PJ + I)z*Vz(x) 

 

the one finds as roots of  fm,z(x) complex values for x, which are connected to the cyclotomic 

functions: 

(10.4) fm,z(x)=0  <--> î*
z

m
*tanx 







+=
22

1

2

1 π
 for m=2k if z is even 

(10.5) fp ,z(x)=0 <--> î*
z

m
*tanx 







+=
22

1

2

1 π
 for m=2k+1 if  z is odd 

and conversely, if z is odd, so that the zeroes for both functions can be computed from the 

cyclotomical roots. Both cases together can then be represented by: 

(10.6) fm,z(x) * fp ,z(x)=0 <--> î*
z

m
*tanx 







+=
22

1

2

1 π
      for m=0..z-1 
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11. Values of the Gm- and Gp- polynomials for real x 

The above equations produce the inverses Gm and Gp of the (by I reduced) (signed) binomial-

matrices :(J*P - I) resp :(P*J - I), which interestingly -together with J- define an eigensystem 

of the original unreduced (signed) binomialmatrices. 

If we use the entries of a fixed row of Gm or Gp with the rowindex n as coefficients for poly-

nomials in general x (as in (9.), but without the goal to find the powersums for a natural expo-

nent n), then we have the more general functions Gm,n(x) and Gp,n(x), which come out to be just 

the integrals of the bernoulli-polynomials (depending on the sign of ß1) . 

A multiplication of G with a vandermonde-(column-)vektor like  

V(x) := { x, x2, x3,.., xn+1} '   

written as a polynomial looks like this: 

(11.1) Gm,n(x) = Gm[n,0]*x + Gm[n,1]* x2 + Gm[n,2] * x3 + ... + Gm[n,n]* xn+1  

(11.2) Gp ,n(x) = Gp [n,0]*x + Gp [n,1]* x2 + Gp [n,2] * x3 + ... + Gp [n,n]* xn+1  

 

We get a family of functions with the interesting property, that in the range 2<x<2 the local 

minima and maxima get better periodical with increasing n and seemingly approximate to a 

sin/cos-shape. The graphs of that functions are shown in the appendix. 

This functions have the special values: 

Table 11.1:  

 Gm,n(x) Gp,n(x) 

 Gm,n(-1) = +/- 1 

Gm,n( 0) = 0 

Gm,n( 1/2) = 0 or local extremum 

Gm,n( 1) = 0  (n>1) 

Gm,n( 2) = 1  (n>1)   

Gp,n( 1) = 1 

Gp,n( 0) = 0 

Gp,n(-1/2) = 0 or local extremum 

Gp,n(-1) = 0 

Gp,n(-2) = +/- 1 (n>1) 

 

The derivatives of Gm,n(x) resp Gp,n(x)  are 

(11.3) Bm,n(x) = d Gm,n(x) /d x         Bp,n(x) = d Gp,n(x) / dx  

 meaning 

(11.5) Bm,n(x) = Gm[n,0] + 2*Gm[n,1]* x + ... + (n+1) Gm[n,n]* xn  

(11.6) Bp ,n(x) = Gp [n,0] + 2*Gp [n,1]* x + ... + (n+1) Gp [n,n]* xn  

and the Bm,n(x) are just the well-known Bernoulli-Polynomials. 

Table 11.2: Special values: 

 Bm,n(x) Bp,n(x) 

 Bm,n(-1) = +/- 1 

Bm,n( 0) = ßm,n 

Bm,n( 1) = 0 

Bm,n( 2) = 1/2   

Bp,n( 1) = 1 

Bp,n( 0) = ßp,n 

Bp,n(-1) = 0 

Bp,n(-2) = +/-.1/2 (n>1) 

 

 



Accessing Bernoulli-Numbers by Matrixoperations S. -13- 

All in all this G-functions seem to be much interesting; for instance one finds in OEIS the fol-

lowing entry: [OEIS_A002425]: 

> A002425      Denominator of Pi^(2n)/(GAMMA(2n)*(1-2^(-2n))*Zeta (2n)). 

>  1, 1, 1, 17, 31, 691, 5461, 929569, 3202291, 221930581, 

> 4722116521, 968383680827, 14717667114151, 2093660879252671, 

> 86125672563201181, 129848163681107301953, 868320396104950823611, 

> 209390615747646519456961 (list) 

>  

> Consider the C(k)-summation process for divergent series: the series 

> Sum((-1)^n*(n+1)^k)==1-2^k+3^k-4^k+..., summable C(1) to the value 

> 1/2 for k=0, is for each k>=1 exactly summable C(k+1) to the sum s(k+ 

> 1)=(2^(k+1)-1)*B(k+1)/(k+1) and so a(n)=Abs(numerator(s(2n))). - 

> Benoit Cloitre (abmt(AT)wanadoo.fr), Apr 27 2002 

>  

> Odd part of tangent numbers A000182 (even part is 2^A101921(n)). - 

> Ralf Stephan, Dec 21 2004 

These are just the odd factors of the denominators, which occur, if one computes the  Gp,n(x)-

funktions for x=-1/2 . Possibly there are other special values with complex x; but this is not yet 

obvious to me  
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12. Gp ("Gotti")-Matrix and Stirlingnumbers 

For a continuous text it seems useful, to assign easy-to-

remember names also to the G-matrices, as I was hinted 

by a reader in the german math-newsgroup; as a provi-

sorial I just took my nickname "Gotti" (which equal also 

the name of a famous Mafiaboß from New York " John 

Gotti"; who has his significance also from his subtrac-

tions (of the wealth of the wealthy) as well from the in-

version (of the legal structure of New York). Picture 

taken from "wikipedia") 

 

Here I use as the "Gotti"- matrix primarily the matrix Gp; and its polynomials in x, constructed 

accordingly to chapter (10), may be calles as "Gotti"-polynomials.  

 

Then we get: 

(12.1) Pc = Gp * J * Gp
-1 Pr = Gm * J * Gm

-1 

The Gotti-matrix Gp own another interesting eigensystem. It seems to be: 

(12.2) Gp =  S2 * R * S2-1 = S2 * R * S1  

where 

 S2 : lower triangular matrix of the Stirlingnumbers 2. kind 

 S1 : lower triangular matrix of the Stirlingnumbers 1. kind 

 R : diagonalmatrix of the reciprocals of the natrual numbers 

Of special interest here is the connection between S1 and S2: 

(12.3) S2 = S1-1 

All entries of S1 and S2 are integers. (The entries of the analoguous eigensystem of Gm are 

rational). 

For the basic binomialmatrix Pr this means the more detailed eigensystem: 

(12.4) Pr =(S2 * R * S1)   *  J  *   (S2 * R-1 * S1)  

or, using N as diagonalmatrix of natural numbers N = diag{1,2,3,...n}, 

(12.5.1) Pr  =(S1-1 * N-1 * S1)   *  J  *   (S1-1 * N * S1)  

(12.5.2)       =(S2 * N-1 * S2-1)   *  J  *   (S2 * N * S2-1)  

which states an impressing hierarchy of known numbers of combinatorics.  

 

Table 12.1  

Zl S1 , first 6 columns (0..5) S2 , first 6 columns (0..5) 

 
0 
1 
2 
3 
4 
5 
 

 
   1    0    0    0    0    0  
  -1    1    0    0    0    0  
   2   -3    1    0    0    0  
  -6   11   -6    1    0    0  
  24  -50   35  -10    1    0  
-120  274 -225   85  -15    1  

 

 
  1    0    0    0    0    0  
  1    1    0    0    0    0  
  1    3    1    0    0    0  
  1    7    6    1    0    0  
  1   15   25   10    1    0  
  1   31   90   65   15    1  
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13. Sample Pari/Gp-Code 

Here follows some example-coding(notation for the software Pari/GP): 

dim = 12     
 \\ size for matrices 
J = matdiagonal(vectorv(dim,r,(-1)^(r-1))) \\ unit-matrix with altern. signs 
 
\\ pascalmatrix and row/col-reduced pascalmatrix (P-I)* ------------------------- 
 
   P    = matpascal(dim-1)   \\ common pascalmatrix 
          tmp = matpascal(dim) - matid(dim+1)  
   P1_I = matrix(dim,dim,r,c,tmp[1+r,c]) \\ empty (first)row and (last)col: dimension is dim 
\\------------------------------------------------------------------------------ 
 
\\ compute Gm, Gp 
   Gm = P1_I^-1       \\ compute Gm 
   Gp = J * Gm * J        \\ compute Gp by formula (5.11) 
\\------------------------------------------------------------------------------ 
 
\\ error-estimate: sum of absolute differences of entries of two matrices-------------------- 
  errest(M1,M2) = sum(r=1,#M[,1],  sum(c=1,#M[1,],  abs(M1[r,c]-M2[r,c])))) 
 
\\ is Gp * J * Gp^-1 eigensystem of PJ ? 
 print(errest(P*J , Gp * J * Gp^-1))  
 
\\ is Gm * J * Gm^-1 eigensystem of JP ? 
 print(errest(J*P , Gm * J * Gm^-1))  
 
\\ is P * Gm = Gp ? 
 print(errest(P *Gm , Gp))  
 
\\-------------------------------------------------------------------------- 
 
\\ G - and H-funktions at x={-2, -1.5, -1,-0.5, 0, 0.5, 1, 1.5, 2} ---------- 
 VX = matrix(dim,9,r,c,(-2+(c-1)*0.5)^r)   \\ vandermondematrix for x-values 
 
   fG(x,n) = Gp[n,] * x* V(x)  \\ function for G_n(x) 
   for(n=1,12,ploth(x=-2,2,fG(x,n))) 
 
   fH(x,n) = Gp[n,] * V(x)  \\ function for H_n(x) 
   for(n=1,12,ploth(x=-2,2,fH(x,n))) 
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14. Pictures 

Function Gm,1..18(x)      (x=-2..+2, y=-2..+2) 

 

and zoomed y'=tanh(y*4); in 4 groups of curves Gm,1'5'9'13  etc: 

x,tanh((y1[1´5´9´13´17]*4)#) 

 

x,tanh((y1[1´5´9´13´17+1]*4)#) 

 

x,tanh((y1[1´5´9´13´17+2]*4)#) 

 

x,tanh((y1[1´5´9´13´17+3]*4)#) 

 

y
 (
x
=
0
) 

x (y=0) 

x
 =

 1
/2
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Function Gp,1..18(x)    (x=-2..+2, y=-2..+2) 

 

Note here (as before with Gm(x)) the similarity of the local extrema, which seems to improve 

with higher degree of n. 

y
 (
x
=
0
) 

x (y=0) 

x
=
- 
1
/2

 



Accessing Bernoulli-Numbers by Matrixoperations S. -18- 

Funktion : Hm,1..18(x)  =  Gm,1..18(x)/x   (x=-2..+2, y=-2..+2) 

 

y
 (
x
=
0
) 

x (y=0) 
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Function : Hp,1..18(x)  =  Gp,1..18(x)/x     (x=-2..+2, y=-2..+2) 
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0
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