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Powerseries for Ut at fractional heights 

Coefficients of powerseries for fractional iteration Ut
oh(x)  

Abstract:  

Iteration of the function Ut(x) = tx–1 to fractional heights pro-

vides powerseries, whose coefficients mostly strongly diverge and 

oscillate. I.N. Baker proved in [Bak], that fractional iterates of the 

function exp(x) – 1 have convergence-radius zero and thus cannot 

conventionally be summed. The divergence and irregular oscillat-

ing of signs is so nasty, that even common techniques for diver-

gent summation like Cesaro- and Euler-sum give no satisfying re-

sult - if their results are usable at all. 

Here I give a graphical overview in three examples of different 

characteristics, for bases t=2, t=3, and t=exp(2) . 

[Update:] 

It seems, that a new series-transformation using the Stirlingnum-

bers 2nd kind is suitable to convert the powerseries with diverging 

coefficients into such of convergent coefficients – thus an expand-

ing of the range of convergence for x from zero to finite values is 

now realized (hopefully to infinity, must be proven). See chap 3. 
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1. Description of problem  

 

1.1. Definition of the base-function Ut(x) and Ut
oh(x) 

Define the iterable function 

 Ut(x) =tx – 1 

 Ut°1(x) = Ut(x) 

 Ut°0(x) = x 

 Ut°h(x) = Ut°h-1(Ut(x)) 

then the functions with different h have different powerseries-expansion. 

I'll denote the coefficients of a powerseries for a certain height h as ak, k 

beginning at zero, such that 

 Ut
°h(x) =    a1 x + a2 x2 + ...   // there is no constant term a0  

1.2. Divergence of series when iteration-height is noninteger 

For fractional h we have alternating divergent sequences of coefficients ak. 

with a more-than-geometric growth. Thus to that powerseries we cannot 

conventionally assign a value; however the theory of divergent summation 

shows, that an assignment of a value can be meaningful (and consistent) for 

some classes of series. Thus a suitable method for summation of divergent 

series must be applied.  

Unfortunately, the rate of growth of the coefficients is hypergeometric. That 

means, that the powerseries does not converge for whatever small absolute 

value of x. For instance, if f(x) has factorials as coefficients 

 f(x) = 1! x – 2! x2 + 3! x3 – 4! x4 + … 

then whatever small value |x|>0 is considered, the series eventually di-

verges, and the radius of convergence (wrt x) is said to be zero.  

For series, whose coefficients do not grow so fast, for instance all ratios of 

consecutive coefficients are a constant value q (thus themselves form a 

geometric sequence) we can assign a value using Euler- or Borelsummation 

of appropriate order.  

But the coefficients of the powerseries for fractional heights increase even 

faster than the factorials in the example above, so Euler-summation, for 

instance, is not applicable (i.e. cannot supply arbitrarily precise approxima-

tion) and another general method of summation must be found. I've usually 

applied a method based on the idea of Riesz-summation (see a general de-

scription for instance in [Vol])  which gives often good approximated mean-

ingful values – but in general without convincing power yet. 

Update: In chap 3 I propose a summation method, which seems to solve this 

problem. (see also Appendix 4.1 for the matrix-definitions required later) 

To understand the characteristic of the growth of the coefficients I pro-

duced some plots to compare them visually for different heights.  
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The coefficients ak for integer heights h=1,2,... form convergent sequences; 

for instance for h=1 we have the simple exponential-series (writing u for 

log(t)) 

 Ut°
1(x)  = a1 x + a2 x2 + a3 x3 + …  

   = ux + u2/2! * x2  + u3 / 3! *x3 + …  

And the sequence of coefficients 

 (a1,a2,a3,a4,…) = (u, u2/2!, u3/3! ,… ) 

eventually tends to zero, thus the radius of convergence of Ut°
1(x) wrt x is 

even infinite. 

But for noninteger heights, for instance h=0.975, 1.65, 1.875 the sequences 

of coefficients eventually diverge. To get an idea about the characteristics of 

that convergent/divergent behave of the coefficients I show trajectories of 

ak, k=1..128 for some example heights h (integer and fractional) and also for 

three different bases t. 

In [Helms07-12] I show the coefficients for fractional iterates of the func-

tion U(x)=exp(x)-1, thus t=exp(1), u=1. The characteristics may be slightly 

different from the here-discussed series, since with t=exp(1) I used the ma-

trix-logarithm for fractional powers and for other t I use diagonalization. 

The general overview over the tables of coefficients suggest, that the trajec-

tory of absolute values of ak starts descending to a global minimum at a 

certain index k, from where it continuously increases with more-than-

geometric rate. The interesting impression is, that the index k disappears 

linearly with the logarithm of d (in h=1 + d, where d<1/2) to infinity.  

Example table 

 d = 1e-4 k_min=19 

      …      k_min=19 

 d = 1e-10 k_min=19 

 d = 1e-15 k_min=23 

 d = 1e-20 k_min=25 

 d = 1e-25 k_min=29 

      ...   ... 

The move seems indeed to be linear in k with log(d), thus the infinite radius 

of convergence of the h=1 iterate is due to the fact, that d->10-oo and the 

index k of the global minimum accordingly moves away to the infinity.  

Here is a zoomed image for the coefficients of powerseries for d=10-11, 10-

12,10-13 ,… 10-25 containing the ak in columns. The roughly smallest absolute 

values ak (the global minima for each height) are marked by the red line  
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Coefficients of powerseries for different heights. The first 64 terms of 

each powerseries are displayed in one column 

1+10-11                                                                                                                              1+10-24 = height 
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2. Plots 

 

2.1. Base t=exp(2) ~ 7.3891 

In the following plot I display the coefficents for the powerseries using 

t=exp(2)  

I computed 128 coefficients for all example heights h. 

We see the convergence of the sequence of coefficients for integer h whose 

graphs soon converge to the x-axis, while the ak-sequences for fractional h 

have a smooth graph at the beginning but are eventually oscillating in sign 

and are also diverging in absolute values. Note that the y-scale is exponen-

tial. 

Graph 1 
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In the above type of plot we cannot compare more than some example 

heights. To have the growthcharacteristics in a greater and more continu-

ous overview, I show another type of plot. Here I use 161 powerseries for 

heights in the interval h=0..2 in equal steps.  

However, this mass of coefficients is difficult to print and to evaluate, if 

given in numbers. So here is a bitmap, whose vertical direction indicates 

the coefficients ak of one powerseries (for one specific height parameter h) 

and the subsequent heights are the subsequent columns of one pixel for 

each height h. Thus the vertical column of one pixel at left border represent 

the coefficients of the powerseries for height h=0, the vertical line in the 

middle of the graph represents the coefficients of the powerseries for h=1 

and the right border represents the powerseries for height h=2. 

Positive coefficients are marked red and negative coefficients are marked 

green, with brightness-value by bk = log(abs(ak))/log(10), with clipping at 

bk=min(max(bk,-16),16)+sign(ak)*16; so the brightness of the color 

red/green resembles roughly the index of the most significant digit of the 

interval 1e-16<abs(ak)<1e16 (brightness 0<=bk<=32) 

Plot 1: Coefficients A of powerseries of different heights h 0<=h<=2 

 

  

 

In the middle there is the vertical line for the converging-to-zero coeffi-

cients of the powerseries at h=1, and at the right border a vertical line at 

h=2. 

In the darker area the absolute values of coefficients are smaller, in the 

lighter areas greater. We see an increasing of light to the bottom which in-

dicates growth of the coefficients. 

There is some more fine-structure visible: the antidiagonal lines are very 

obvious, but there are some brightness-areas with a very fine topology (dif-

ficult to discern in this bitmap) 
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"Pixelizing" gives a better view into the general structure: 

Plot 2: 

 

 

This image emphasizes some general periodicity for heights h (modulo 1).  

 

In the following picture the range for h is increased. We have 0<=h<=4. The 

vertical lines of convergent sequences at integer h=0,1,2 are easily recog-

nizable. The integer heights at h=3,4 do not occur as lines; the surrounding 

oscillations obviously occur at terms with higher index k>127.  

Plot 3: 
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But we can recognize another topology of brightness now in the left bottom 

square. See the enhancement of this structure in the next picture.  

In the following picture the brightness-parameter for each pixel was loga-

rithmized (base 10), and then a "relief "-filter was applied to the picture 

which renders somehow "terasses" according to the brightness-values. 

Here darker color of the terasses correlate with higher absolute values in 

the originial data and on the green line the coefficients tend to zero. 

Plot 4: 
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Heights –2<=h<=2 

Here the original coloring scheme is used again. For higher negative h's the 

oscillating and diverging structure of coefficients continue and even seem 

to improve. The light green line is the zero-coefficients-series for h=0. (Un-

fortunately the program read the zeros not correctly, so assigned maximal 

negative values to them- the color of this line should be black, sorry.) 

Plot 5: Coefficients A of powerseries 
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Accidentally I applied a "fun"-coloring-scheme – but the result is artistically 

impressive. It looks like the "hellgate of tetration-powerseries" – an ex-

tremely good metaphor! (Don't get lost in the chaos of that powerseries - 

you're now warned ...) 

Plot 6: "The hellgate of tetration-powerseries" 
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2.2. Base t = 3 

Here we get wildly diverging entries, where we even don't find the larger 

oscillating structure of the diverging entries at fractional heights. 

Since the ak are computed by a formula, such that in the denominators oc-

cur products of  

 (u-1)(u2-1)(u3-1)...(uk-1) 

where u=log(t), (see [Helms08-1],pg 21) and is here about 1.098, we have 

denominators near zero, which lets us expect hyperbolic effects. Indeed I 

could not find a larger oscillating structure is I got this in the example (us-

ing t=exp(2)) in the first 128 terms. 

Graph 2: 
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The detail at small indexes k looks as follows 

Graph 3: 
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2.3. Base t = 2 

Using base t=2 we seem to get convergent sequences of ak.so the fraction-

ally iterated functions U2
oh(x) have convergence-radius of at least 1. How-

ever, for fractional iterates the sequences of coefficients have still an inter-

esting larger-scale oscillating behaviour. 

Graph 4: 

 

  

 

The problem with these powerseries is that although the sequences of coef-

ficients converge to zero and thus have a radius of convergence of at least 1, 

the functions of fractional heights are not well summable (Cesaro- and/or 

Eulersummation) and convergence cannot much be accelerated by these 

methods, if at all. 
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3. Achieving convergence by Stirling-transformation 

 

3.1. Idea 

I possibly got an extremely simple solution for the problem of alternating 

divergence for fractional iteration. 

We can transform the coefficients ak of a powerseries for a fractional or 

integer iterate of Ut
oh(x) in the following way. 

Assume the direct computation. In matrix-notation we would collect all ak 

in a column-vector A and then evaluate Ut
oh(x) by the dot-product 

(1) V(x)~ * A = Ut
oh(x) 

(see matrix-definitions at appendix 4.1). But we may insert a transforma-

tion by the factorially-scaled Stirling-matrix 2nd kind U. This matrix is the 

operator for transforming V(x)->V(ex -1) using base exp(1): 

 V(x)~ * U = V(ex- 1)~ 

 

Obviously, if we use x' = log(1+x) we have 

 V(x')~ * U = V(x)~ 

 

So we may rewrite (1) as 

 (V(x')~ * U ) * A = Ut
oh(x) 

and use associativity to change order of evaluation 

 V(x')~ * (U * A) = Ut
oh(x) 

 V(x')~ *     A'    = Ut
oh(x) 

 

We may call the expression in the parenthese A' , which is now a sort of 

"Stirling-transform" of A, and we observe, that the coefficients in A' form an 

ordinary convergent sequence.  

We have then 

 a'k  = ∑
=
















k

0j

jj,k a*2S*
!k

!j
  

where S2k,j is the Stirlingnumber 

2nd kind of row k, column j of the 

lower triangular Stirling-matrix 

 Ut
oh(x)  = ( )  x' a'lim 

n

0k

k

k
infn-
∑

=
>

 

 

 = ( )  x)log(1 a'lim 
n

0k

k

k
infn-
∑

=
>

+  

 

(I checked this only for the base t=exp(2) so far) 
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3.2. Base t=exp(2) ~ 7.3891 

3.2.1. Plot 

Here is the graph of the sequences of coefficients for some fractional 

heights (Sorry, I used my Pari/GP-notation fS2F for U here) 

Graph 5: 

 

 

 

 

The graph suggests, that for all heights h>-2 (as far as tested), including the 

fractional ones, the sequences of coefficients converge nicely. 

This transformation has another benefit: since x' = log(1+x) which is 

smaller than x this extends remarkably the range for the x-parameter. Pos-

sibly we have now functions, which converge for any real x. 
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3.2.2. Comparision of the explicite powerseries 

 

To see this explicitely written as powerseries: 

The raw computation of the powerseries-expansion for Ut
o0.5(x) is: 

 

Ut
o0.5

(x) = 1.4142*x + 0.58579*x^2 + 0.085506*x^3 + 0.0043325*x^4 + 0.00052932*x^5 - 
0.00034288*x^6  
+ ...  
+ 0.000054370*x^33 - 0.000035807*x^34 + 0.000010332*x^35 + 0.000022808*x^36 - 
0.000064328*x^37 + 0.00011487*x^38 
+... 
+ 0.33002*x^87 - 0.23926*x^88 + 0.093113*x^89 + 0.12710*x^90 - 0.44514*x^91 + 
0.89110*x^92 - 1.5028*x^93 + 2.3278*x^94 - 3.4251*x^95 + 4.8684*x^96 - 6.7486*x^97 + 
9.1779*x^98 - 12.294*x^99 + 16.266*x^100 - 21.300*x^101 + 27.647*x^102 - 35.611*x^103 
+ 45.558*x^104 - 57.932*x^105 + 73.264*x^106 - 92.190*x^107 + 115.47*x^108 - 
144.00*x^109 + 178.84*x^110 - 221.26*x^111 + 272.73*x^112 - 334.95*x^113 + 
409.94*x^114 - 499.98*x^115 + 607.73*x^116 - 736.19*x^117 + 888.75*x^118 - 
1069.2*x^119 + 1281.7*x^120 - 1530.7*x^121 + 1821.2*x^122 - 2158.0*x^123 + 
2546.2*x^124 - 2990.3*x^125 + 3494.4*x^126 - 4061.1*x^127 + O(x^128) 

 

which shows divergence of the coefficients, which will increase to a hyper-

geometric rate. The smallest coefficient occurs at x^35 (red marked) thus 

limits in principle the achievable accuracy. 

The Stirling-transformed series for Ut', which means we have also to insert 

x'=log(1+x) for x, looks like 

 

Ut' 
o0.5

(x) = 1.4142*x + 1.2929*x^2 + 0.90699*x^3 + 0.53323*x^4 + 0.27431*x^5 + 
0.12690*x^6 + 0.053781*x^7 + 0.021155*x^8 + 0.0078010*x^9 + 0.0027175*x^10 + 
0.00089981*x^11 + 0.00028462*x^12 + 0.000086358*x^13 + 0.000025224*x^14 + 
0.0000071125*x^15  
+... 
+ 1.3418e-15*x^33 - 1.8094e-16*x^34 - 2.1937e-16*x^35 + 3.0532e-16*x^36 - 2.7140e-
16*x^37 + 2.0632e-16*x^38 
+... 
+4.9450e-28*x^87 - 9.3801e-29*x^88 - 6.8606e-29*x^89 + 1.1767e-28*x^90 - 1.1725e-
28*x^91 + 9.8682e-29*x^92 - 7.6343e-29*x^93 + 5.6126e-29*x^94 - 3.9868e-29*x^95 + 
2.7622e-29*x^96 - 1.8778e-29*x^97 + 1.2574e-29*x^98 - 8.3165e-30*x^99 + 5.4443e-
30*x^100 - 3.5328e-30*x^101 + 2.2749e-30*x^102 - 1.4550e-30*x^103 + 9.2502e-31*x^104 
- 5.8486e-31*x^105 + 3.6794e-31*x^106 - 2.3041e-31*x^107 + 1.4366e-31*x^108 - 8.9205e-
32*x^109 + 5.5178e-32*x^110 - 3.4004e-32*x^111 + 2.0880e-32*x^112 - 1.2776e-32*x^113 
+ 7.7910e-33*x^114 - 4.7348e-33*x^115 + 2.8676e-33*x^116 - 1.7308e-33*x^117 + 
1.0411e-33*x^118 - 6.2394e-34*x^119 + 3.7257e-34*x^120 - 2.2162e-34*x^121 + 1.3129e-
34*x^122 - 7.7448e-35*x^123 + 4.5475e-35*x^124 - 2.6568e-35*x^125 + 1.5437e-35*x^126 
- 8.9147e-36*x^127 + O(x^128) 

 

with nicely diminuishing coefficients from the beginning (and even alter-

nating).  

Using x=1, while Ut
o0.5(x) has to be evaluated by means of a divergent sum-

mation technique, we get the same result by ordinary sum of the powerser-

ies for Ut' o0.5 using x'=log(1+x)~0.69315 which even allows to neglect all 

terms from, say k=35, and we will still get a result accurate to an error 

smaller than something like 1e-50. 
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3.2.3. Plot 

 

The bitmap for 161 fractional iterates between –2<h<2 shows that nice be-

have in a greater overview. Here the dark area at the bottom indicates coef-

ficients tending to zero. 

Plot 7: Coefficients A' of powerseries Stirling-transformed of order 1; base t=exp(2) 

 

 

 

This bitmap suggests very strongly, that indeed we can expect convergent 

sequences of coefficients in the powerseries for fractional iterates. 
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3.3. Base t=exp(3) ~ 20.086 

Since the powerseries for this base are "more diverging" I tried powers of 

U. 

3.3.1. First power of U 

Bitmap by the simple Stirling-transform using U as before 

Plot 8: Coefficients A' of powerseries Stirling-transformed of order 1 , base t=exp(3) 

 

 

 

The transformation works as expected. 

 

3.3.2. Using second power, U2  

The matrix-formula was: 

(2) V(x)~ * A = Ut
oh(x) //restated 

Using the second power of U we have to start with: 

 V(x)~ * U2 = V(exp(ex- 1)-1)~ 

 

Now, if we use x" = log(1+log(1+x)) we have 

 V(x")~ * U2 = V(x)~ 

 

So we may rewrite (2) as 

 (V(x")~ * U2 ) * A = Ut
oh(x) 

and use associativity to change order of evaluation 

 V(x")~ * (U2 * A) = Ut
oh(x) 

 V(x")~ *     A"    = Ut
oh(x) 
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We can adapt the formula in serial notation accordingly. 

 

We get the following bitmap: 

Plot 9: Coefficients A" of powerseries Stirling-transformed of order 2 , base t=exp(3) 

 

 

 

3.3.3. Using third power, U3  

The matrix-formula was: 

(3) V(x)~ * A = Ut
oh(x) //restated 

Using the third power of U we have to start with: 

 V(x)~ * U3 = V(exp(exp(ex- 1)-1)-1)~ 

 

Now, if we use x'" = log(1+log(1+log(1+x))) we have 

 V(x'")~ * U3 = V(x)~ 

 

So we may rewrite (3) as 

 (V(x'")~ * U3 ) * A = Ut
oh(x) 

and use associativity to change order of evaluation 

 V(x'")~ * (U3 * A) = Ut
oh(x) 

 V(x'")~ *     A'"    = Ut
oh(x) 
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We can adapt the formula in serial notation accordingly. 

 

We get the following bitmap: 

Plot 10: Coefficients A'" of powerseries Stirling-transformed of order 3 , base t=exp(3) 

 

 

 

Although now no black areas occur (the coefficients do not converge fast 

enough to zero), we can observe, that the darkening of the area read from 

left expands faster than the occurence of alternating signs. That may sug-

gest, that we will asymptotically still get convergent series of coefficients, 

which means with convergence-radius of the function of at least 1. 

 

 

 

3.3.4. Hypothese 

Analoguously to the classical Euler-transform in other cases of evaluating 

alternating divergent series, we can apply higher "orders" of the transfor-

mation. What we see is (and what are the hypotheses so far) with higher 

orders: 

 a) the increasing size of the structures 

 b) that the alternating signs disappear to the left 
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3.4. Results 

Here is a table of results, which is based on a slightly different implementa-

tion of this "Stirling-transformation". I use the conventional path via partial 

sums 

 ∑
=

=
n

0k

k

kn xas
 

first; setting x=1. These partial sums are then "Stirling-transformed" (with 

norming) 

Let, for a row r denote the rowsum of U as Sr  

 ∑
=









=

r

0c

c,rr
!r

!c
2SS

 

(where again, S2r,c are the Stirlingnumbers 2nd kind) then the transforms of 

the partial sums are 

 

∑
= 


















=
r

0c r

c,r

x,rr
S

!r

!c
2S

s's
 

and this gives then in the limit 

 r
r

oh

t 'slim)x(U
∞→

=
 

In matrix-notation this is 

 PS = DR * A  // where DR is the triangular unit-matrix  

    // which implements partial summing 

 Ut
oh(x) = lim r->inf rownorm(U)*PS [r]  

    // where r indicates the row-index and rownorm norms  

    //a row, such that the rowsum equals 1 

The advantage of the transformation is, as said above, that we get conver-

gent series, and – for the tested example – high accuracy with 128 terms. 
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What I got by this, using base t=exp(2) is the following table for heights –

2<=h<=2 (see full table at appendix) 

 

h Ut
oh(1) ,128 terms used 

difference of results 

using 128 and 127 terms 

Integer iterates, 

direct computation 
-2.000 0.148781642394 4.09201648025E-61 0.148781642394 

-1.975 0.151764471472 -1.00757696730E-55  

-1.950 0.154814688293 -2.20253988524E-55  

-1.925 0.157934114668 -3.53513519222E-55  

-1.900 0.161124633560 -4.95458163457E-55  

-1.875 0.164388191607 -6.41053955877E-55  

-1.850 0.167726801784 -7.85448279957E-55  

... ... ...  

-1.025 0.338740003829 4.52893426113E-56  

-1.000 0.346573590280 5.53348935396E-123 0.346573590280 

-0.9750 0.354630797379 -5.13722405573E-56  

... ...   

0.4500 1.91924350162 -1.75550341076E-55  

0.4750 2.00205867213 -1.60763823499E-55  

0.5000 2.09017531971 -1.44447235835E-55  

0.5250 2.18405909158 -1.27032035841E-55  

0.5500 2.28422767154 -1.08958493793E-55  

... ... ...  

0.9500 5.54223517697 1.54985526435E-56  

0.9750 5.94359516189 8.24955710752E-57  

1.000 6.38905609893 2.42197375312E-67 6.38905609893 

1.025 6.88513866689 -8.97563144073E-57  

1.050 7.43957118855 -1.83978085590E-56  

... ... ...  

1.450 45.4551347734 2.78647933160E-34  

1.475 53.8234128366 1.14244842556E-32  

1.500 64.3887770782 4.49621086353E-31  

1.525 77.8950259312 1.70109100327E-29  

1.550 95.3950973612 6.19568773605E-28  

... ... ...  

1.950 65150.4833093 0.0000850527607210  

1.975 145391.211783 0.00190956027798  

2.000 354374.278789 0.0419734968018 354374.440984 
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3.5. An analytical aspect 

From the matrix-based formulae the effect can nicely be seen. 

Since, by the matrix-approach, 

 V(x)~ Ut
h = V(Ut°h(x))~  

we have by this transformation, which I expand here to a full similarity-

transformation: 

 (V(log(1+x))~ *U )* Ut
h  = V(Ut°h(x))~  

 (V(log(1+x))~ *(U * Ut
h *U-1 ) = V(Ut°h(x))~ *U-1  

       =  V(log(1+Ut°h(x)))~  

 U * Ut
h *U-1  =  U * (dV(u) U)h *U-1 

   = (dV(1/u) dV(u))* U * (dV(u) U)h-1 * dV(u) U*U-1  

   =  dV(1/u) (dV(u)* U * (dV(u) U)h-1 )* dV(u)   

   =  dV(1/u) (dV(u) U)h* dV(u)   

(1)   =  dV(1/u) *  Ut
h * dV(u)   

which also results in the transformation 

 V(log(1+x)/u)~ * Ut
h  = V(log(1+Ut°h(x))/u)~  

The effect of (1) is, that in the symbolic powerseries we remove just powers 

of u. Recall the the symbolic powerseries for Ut°h(x): 

 Ut°h(x) = ∑
=

inf

1k

k

k,u

kh

k,u

!k

x
*

d

u*)u(a
 

where au,k(uh) are polynomials in u and uh with coeffients depending on k, 

we have also the factor uk. This uk- factor disappears by the similarity-

transformation in the following way 

 Ut°h(x) = 1)
!k

)x1log(
*

d

)u(a
uexp(

inf

1k

k

k,u

h

k,u
−

+
∑

=

 

But since this is only the removal of a factor with geometric increase, but 

the powerseries seem to have convergence-radius zero (hypothetically ex-

tending I.N.Baker's result for exp(x)-1), we are not yet definitely on the suc-

ces-side. However, since many more terms of the powerseries are decreas-

ing in absolute value, we should be able to get better approximations this 

way, at least for bases t, where u=log(t)>1 . 

 

(to be continued) 

 

 

3.6. Provisorial conclusion / Impulse to proceed 

The difficult to handle powerseries for fractional iteration seem to be trans-

formable into convergent series by a simple transform using the 

Stirlingnumbers 2nd kind.  

 

Gottfried Helms, 24.07.2008 
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4. Appendix 

 

4.1. Matrix-definitions 

All derivations are done in the matrix-notation; however can be re-

expressed in common serial notation. The matrix-notation is simply meant 

to keep the formulae concise.  

All matrices are assumed as of infinite size (to resemble the infinite terms 

of powerseries); in the current computations I truncated them to size 

n=128 resp nxn=128x128.  

The used matrix-operators for the U-tetration are named U resp. Ut and the 

other involved standard-matrices are as follows: 

 V(x) :=  columnr=0..inf[1,x,x2,x3,...xr,...] 

  an infinite "vandermonde" (column-) vector of a general x  

 V(x)~ := the transpose ; the symbol is taken from the convention in Pari/GP 

 dV(x) := the diagonal arrangement of V(x) 

  

 The column- and rowindices are beginning at zero 

VZ := matrixr=0..inf,c=0..inf[cr]  

  := [V(0),V(1),V(2),...]  

  the collection of V()-vectors of consecutive 

parameters  

P   := matrixr=0..inf,c=0..inf[binomial(r,c)]  

   the lower-triangular Pascal-matrix 

 

dF := diag(0!,1!,2!,...) 

 

S2 :=  matrixr=0..inf,c=0..inf[s2r,c]  

  // s2 Stirling-numbers 2nd kind 

 

S1 :=  matrixr=0..inf,c=0..inf[s1r,c]   

   // s1 Stirling-numbers 1st kind 

 

U = fS2F :=  matrixr=0..inf,c=0..inf[s2r,c c!/r!]  

  // s2 Stirling-numbers 2nd kind 

 

u  :=log(t)  // base-parameter 

Ut := dV(u) * U 
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DR := matrixr=0..inf,c=0..inf[if(r>=c,1)] 

 

 

The function Ut°h(x) can be computed by the dot-product of V(x) and col-

umn 1 of the hth-power of Ut (which contains the required coefficients of 

the powerseries)  

 V(x)~ * Ut
h   = V(Ut°h(x) )~  

 

or, referencing the second column of Ut only: 

 

 V(x)~ * Ut
h [,1]  = Ut°h(x)  

The fractional powers of the matrix Ut is computed by diagonalization:  

 Ut = W-1 * D * W // where the diagonal D equals dV(u) and W is triangular 

This can exactly be solved for any finite dimension where the entries are 

constant wrt to selected matrix-size. (A simple recursive solution). Then 

the fractional h'th powers of Ut are computed by 

 Ut
h = W-1 * dV(uh) * W  

Important: for u=1, t=exp(1) (and bases near that value) the matrix-

logarithm is applied instead. 

 

 

4.2. Tables 

4.2.1. Base t=exp(2) 

 

Table of approximates of Ut
oh(1) for h=-2..2 in 160 steps using base 

t=exp(2)~6.38905609893  

h 

Ut
oh(1)  

128 terms used 
difference of results 

using 128 and 127 terms 
-2.000 0.148781642394 4.09201648025E-61 

-1.975 0.151764471472 -1.00757696730E-55 

-1.950 0.154814688293 -2.20253988524E-55 

-1.925 0.157934114668 -3.53513519222E-55 

-1.900 0.161124633560 -4.95458163457E-55 

-1.875 0.164388191607 -6.41053955877E-55 

-1.850 0.167726801784 -7.85448279957E-55 

-1.825 0.171142546188 -9.24093772260E-55 

-1.800 0.174637578968 -1.05285638946E-54 

-1.775 0.178214129401 -1.16810569215E-54 

-1.750 0.181874505127 -1.26678601269E-54 

-1.725 0.185621095548 -1.34646777765E-54 

-1.700 0.189456375403 -1.40537883466E-54 

-1.675 0.193382908532 -1.44241617525E-54 

-1.650 0.197403351836 -1.45713893941E-54 

-1.625 0.201520459451 -1.44974402527E-54 

-1.600 0.205737087133 -1.42102600088E-54 

-1.575 0.210056196899 -1.37232332072E-54 

-1.550 0.214480861902 -1.30545308365E-54 

-1.525 0.219014271584 -1.22263673030E-54 
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-1.500 0.223659737106 -1.12641916825E-54 

-1.475 0.228420697091 -1.01958383306E-54 

-1.450 0.233300723675 -9.05066148888E-55 

-1.425 0.238303528916 -7.85867746245E-55 

-1.400 0.243432971557 -6.64973635962E-55 

-1.375 0.248693064184 -5.45274331996E-55 

-1.350 0.254087980802 -4.29494671718E-55 

-1.325 0.259622064847 -3.20130807787E-55 

-1.300 0.265299837682 -2.19396550105E-55 

-1.275 0.271126007591 -1.29179928123E-55 

-1.250 0.277105479321 -5.10105315764E-56 

-1.225 0.283243364195 1.39621203423E-56 

-1.200 0.289544990856 6.49792278030E-56 

-1.175 0.296015916665 1.01672701607E-55 

-1.150 0.302661939812 1.24055075057E-55 

-1.125 0.309489112197 1.32500139054E-55 

-1.100 0.316503753120 1.27715294403E-55 

-1.075 0.323712463854 1.10706770668E-55 

-1.050 0.331122143163 8.27389786305E-56 

-1.025 0.338740003829 4.52893426113E-56 

-1.000 0.346573590280 5.53348935396E-123 

-0.9750 0.354630797379 -5.13722405573E-56 

-0.9500 0.362919890491 -1.07006321730E-55 

-0.9250 0.371449526905 -1.65066443311E-55 

-0.9000 0.380228778734 -2.23749445643E-55 

-0.8750 0.389267157395 -2.81328981940E-55 

-0.8500 0.398574639809 -3.36195528409E-55 

-0.8250 0.408161696458 -3.86891434953E-55 

-0.8000 0.418039321439 -4.32140384738E-55 

-0.7750 0.428219064697 -4.70870803363E-55 

-0.7500 0.438713066612 -5.02232933208E-55 

-0.7250 0.449534095129 -5.25609461431E-55 

-0.7000 0.460695585670 -5.40619756770E-55 

-0.6750 0.472211684045 -5.47117927292E-55 

-0.6500 0.484097292638 -5.45185054828E-55 

-0.6250 0.496368120150 -5.35116089595E-55 

-0.6000 0.509040735221 -5.17401997699E-55 

-0.5750 0.522132624272 -4.92707843411E-55 

-0.5500 0.535662253964 -4.61847555857E-55 

-0.5250 0.549649138683 -4.25756175589E-55 

-0.5000 0.564113913536 -3.85460400264E-55 

-0.4750 0.579078413362 -3.42048250880E-55 

-0.4500 0.594565758348 -2.96638661656E-55 

-0.4250 0.610600446866 -2.50351759218E-55 

-0.4000 0.627208456258 -2.04280541998E-55 

-0.3750 0.644417352338 -1.59464601053E-55 

-0.3500 0.662256408490 -1.16866441150E-55 

-0.3250 0.680756735328 -7.73508687414E-56 

-0.3000 0.699951422006 -4.16678141471E-56 

-0.2750 0.719875690386 -1.04388516000E-56 

-0.2500 0.740567063404 1.58524242474E-56 

-0.2250 0.762065549163 3.68661106455E-56 

-0.2000 0.784413842431 5.24078433084E-56 

-0.1750 0.807657545455 6.24269166760E-56 

-0.1500 0.831845410221 6.70109033021E-56 

-0.1250 0.857029604574 6.63770739168E-56 

-0.1000 0.883266004898 6.08609846115E-56 

-0.07500 0.910614518426 5.09026502228E-56 

-0.0500 0.939139438629 3.70307626659E-56 

-0.0250 0.968909837620 1.98454393587E-56 

0.0000 1.00000000000 2.041281526E-202 

0.0250 1.03248990321 -2.18177298377E-56 

0.0500 1.06646575014 -4.49041019351E-56 

0.0750 1.10202056051 -6.85578525869E-56 

0.1000 1.13925482862 -9.20974045399E-56 
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0.1250 1.17827725587 -1.14876877214E-55 

0.1500 1.21920556807 -1.36300468824E-55 

0.1750 1.26216742863 -1.55834930026E-55 

0.2000 1.30730146082 -1.73019908921E-55 

0.2250 1.35475839393 -1.87476010084E-55 

0.2500 1.40470235077 -1.98910473981E-55 

0.2750 1.45731229648 -2.07120446227E-55 

0.3000 1.51278367212 -2.11993867020E-55 

0.3250 1.57133023995 -2.13508068412E-55 

0.3500 1.63318617222 -2.11726219652E-55 

0.3750 1.69860842041 -2.06791807521E-55 

0.4000 1.76787940830 -1.98921378529E-55 

0.4250 1.84131009978 -1.88395802419E-55 

0.4500 1.91924350162 -1.75550341076E-55 

0.4750 2.00205867213 -1.60763823499E-55 

0.5000 2.09017531971 -1.44447235835E-55 

0.5250 2.18405909158 -1.27032035841E-55 

0.5500 2.28422767154 -1.08958493793E-55 

0.5750 2.39125782952 -9.06643473920E-56 

0.6000 2.50579359389 -7.25740373036E-56 

0.6250 2.62855575211 -5.50887633339E-56 

0.6500 2.76035292858 -3.85775699610E-56 

0.6750 2.90209454058 -2.33696348512E-56 

0.7000 3.05480599903 -9.74789623601E-57 

0.7250 3.21964660129 2.05588436331E-57 

0.7500 3.39793066465 1.18645675450E-56 

0.7750 3.59115257551 1.95575725626E-56 

0.8000 3.80101658899 2.50713260877E-56 

0.8250 4.02947241486 2.83982801087E-56 

0.8500 4.27875788211 2.95845886162E-56 

0.8750 4.55145030117 2.87265617216E-56 

0.9000 4.85052856291 2.59660405743E-56 

0.9250 5.17944855466 2.14848564740E-56 

0.9500 5.54223517697 1.54985526435E-56 

0.9750 5.94359516189 8.24955710752E-57 

1.000 6.38905609893 2.42197375312E-67 

1.025 6.88513866689 -8.97563144073E-57 

1.050 7.43957118855 -1.83978085590E-56 

1.075 8.06155846276 -2.79887303842E-56 

1.100 8.76212065682 -3.74458219387E-56 

1.125 9.55452324610 -4.34775784184E-56 

1.150 10.4548261171 2.06904925500E-55 

1.175 11.4825897977 2.03275257844E-53 

1.200 12.6617904993 1.48421551843E-51 

1.225 14.0220149408 1.01379756997E-49 

1.250 15.6000333024 6.51488362789E-48 

1.275 17.4418878886 3.94903550037E-46 

1.300 19.6056919163 2.26333836768E-44 

1.325 22.1654160710 1.22932849531E-42 

1.350 25.2160637847 6.34129229359E-41 

1.375 28.8808211306 3.11286011567E-39 

1.400 33.3210482169 1.45695775320E-37 

1.425 38.7504117507 6.51372560175E-36 

1.450 45.4551347734 2.78647933160E-34 

1.475 53.8234128366 1.14244842556E-32 

1.500 64.3887770782 4.49621086353E-31 

1.525 77.8950259312 1.70109100327E-29 

1.550 95.3950973612 6.19568773605E-28 

1.575 118.404353175 2.17527216428E-26 

1.600 149.142852032 7.37145701535E-25 

1.625 190.926311527 2.41399561943E-23 

1.650 248.811306070 7.64832842296E-22 

1.675 330.686113737 2.34705994831E-20 

1.700 449.164016764 6.98342783166E-19 

1.725 624.964213535 2.01668882457E-17 
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1.750 893.139076207 5.65789354699E-16 

1.775 1314.93820096 1.54354082962E-14 

1.800 2001.26271589 4.09839428311E-13 

1.825 3160.95197578 1.06001083639E-11 

1.850 5204.73282794 0.000000000267276805071 

1.875 8980.30615555 0.00000000657514974489 

1.900 16333.8660823 0.000000157931503896 

1.925 31535.3809448 0.00000370649148228 

1.950 65150.4833093 0.0000850527607210 

1.975 145391.211783 0.00190956027798 

2.000 354374.278789 0.0419734968018 
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