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After a couple of proposals have been popped up in the previous years I needed 

for myself a more immediate impression of their different properties and charac-

teristics. When one looks at wikipedia he/she can even find some serious sugges-

tion of a linear interpolation, so that was triggering me to compile a comparision of 

different variants. I cannot yet implement all of those methods - but the overview 

here might still be interesting and an eye-opener for someone mor involved than 

me. 

I am most interested in the behave in the complex plane as the most general appli-

cation of tetration, so we should look at complex values to be tetrated; also to 

stress the methods much, we should use a base outside the conventional Euler-

interval b of 1..e1/e ; I chose b=4 here which is only real - but to use a complex base 

too would unfortunately have overcomplexified my computations... The initial 

values, for which I generated the trajectories were however imaginary: z1(0)=0.1 î 

,  z2(0) = 0.05 î and z3(0) = 0.01 î . 

Usually I think in the paradigm of the regular tetration and also assume/hope, it 

shall give meaningful solutions even when this involves powerseries with complex 

coefficients. Because it seems, that we can compute nearly arbitrary accurate val-

ues even if we use the powerseries for its Schröder-functions, I use it as first ref-

erence in the following. 

 

Regular tetration 

That base b=4 provides no real fixpoint but only complex ones (and they all are 

repelling). So the regular tetration has to employ complex powerseries; we have 

to use the powerseries for exp(z+ln(t)) - ln(t) whose constant term vanishes by 

this shift of coordinates and thus can be "regularly" fractionally iterated.  

But besides the general inconveniences which occur with powerseries with com-

plex coefficients we have a very uneasy problem of convergence: the real axis is off 

the radius of convergence and so no immediately meaningful values can be com-

puted, and for iterates from , say, z0=1 (or in general, from powertowers on b) in 

integer steps we cannot approach the fixpoint due to the singularity of log(0). 

When I constructed the powerseries for regular tetration, using the complex fix-

point near 0.06 + 1.091 î  it was obvious, that the series would converge miserably 

if at all for real initial values. But those values are naturally of special interest. So I 

computed approximations for a start. I set z1(0) = 0 + 0.1*I  where the notation 

"(0)" means, it has iteration height h=0 . This values is thus "the norm" for the no-

tation of the subsequent iterates.  

Then to get an improved general impression I observe also the trajectories begin-

ning at  z2(0) = 0 + 0.05 î and z3(0) = 0 + 0.01 î .  From those I computed the values 

for fractional heights from h=0 to h=1, which means z1(1)= 4z1(0) ~ 0.99 + 0.138 î, 

z2(1) = 4z2(0)~ 0.997 + 0.069 î and z3(1) = 4z2(0) ~ 0.9999+0.0138 î.  
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Because the powerseries for the schröderfunction do not converge for those val-

ues I shifted that initial values towards the fixpoint by integer-height-tetrating 

with height h=–6 . For the interval zk(-6)..zk(-5) in height steps of 1/20 the powers-

eries for the schröder-function seem to converge nicely (at least in the first 64 

terms) and give the values for the according fractional heights. That list of 20 val-

ues for fractional heights are then reshifted using inter-heights to cover the wider 

interval zk(-5)..zk(2)  

This is shown in the first plot. 
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Regular tetrat ion base 4 : Approx imation from complex  to real tetrat ion possible?
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height h in 1/20-steps

points at

integer heights

 

The blue line is the trajectory of z0(0) = 0.1 î , the magenta line that of z1(0) = 0.05 î 

and the brown line that of z2(0) =0.01 î 

The big points are the values of the integer iteration, which means, that value for 

which no interpolation is needed. We see near the fixpoint the begin of the spirals 

– this is the interval of heights h=–6…–5 relative to the three zk(0) for which the 

fractional iterates are computed using the regular tetration-method and the 

schröder-functions. 

What is surprising is that the innocent looking spirals begin to wobble in the very 

first height-interval h=0..1 and even more in that of h=1..2. Also the crossings of 

the real axis to negative imaginary numbers looks very suspicious to me. 

But well, here are two views into details:  
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Detail in the height-interval h=0..1  
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which shows the wobbling, and even self-crossing of the z2(0)-trajectory. 

That special shape suggests, that it would be completely meaningless to use regu-

lar tetration with base 4 as some approximation to the real tetration of this base. 

In the following we see the much more pleasing region in the near of the fixpoint. 

The marked unit-interval was used for the fractional tetration and from here the 

other height-intervals were computed using the functional equation zk(h+1) = 

4zk(h) The computations were done in Pari/GP with decimal precision to 200 digits, 

so rounding errors should not be visible or significant for this interval of computa-

tions. 
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The log-polar /spiral-interpolation 

 

This idea follows from the observation, that the regular tetration near the fixpoint 

forms a smooth spiral – but that then there occurs an uneasy/unreasonable wob-

bling from h=0 towards h=1 and higher. It seems "unreasonable" because one 

should expect that the imaginary part of the iterates should always be positive or 

in other words, the trajectory should not cross the real axis. (I assume this as "rea-

sonable" because we have symmetry around the real-axis and the picture of the 

lower half-plane should just mirror the picture and the trajectories of the conju-

gate initial points should not interfere). 

Well, that crossing of the real axis may be due to some fine distortions in the nu-

merical computation of the parts of the spiral near the fixpoint.  

So I try a polar/spiral interpolation, where the coordinates at the integer heights 

z(-6) and z(-5) are written in log-polar-form with the fixpoint as origin. For a com-

plex number z = x+y î = exp(λ + φ î) we have [λ ,φ] where λ = ln(abs(z)) and φ = 

arg(z).  

Denoting the fixpoint as t I compute then [λ -6 , φ -6] = logpolar(z(h-6) - t) and  [λ -5 , 

φ -5 ] = logpolar(z(h-5) - t)  , then interpolate between [λ -6 , φ -6] and [λ -5 , φ -5 ]  line-

arly and rewrite this again as complex number. This provides a very close ap-

proximation to the regular tetration!  

In the following plot the lines are nearly overlaid. To see some difference at all I 

used the more difficult initial value z2(0) = 0.01 î which provides more wobble in 

the h=0..2 – interval: only there we see that fine differences to the regular tetra-

tion! In the intervals h<0 the red line of the interpolation-trajectory and the brown 

line of the z2 - trajectory are visually not discernable. 
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Here is a bit more detail which focuses the small differences in the region of h=0 to 

2 at the positive real-axis: 
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Polar vs regular tet rat ion base 4 - detail
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That suggests, that the linear interpolation using the logpolar-representation is a 

very good poor-mans-solution for some intervals.  
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Note, that for the tetration on the real domain only this reduces to linear inter-

polation of the logs of one unit-height-interval:  

 ( ) 1..0,))0((lg))1((lg))0((lg))((lg 4444 =−⋅+= hrealxforxxhxhx  

This linear interpolation of the logarithms should not be confused with the linear 

interpolation of the values themselves, as introduced below. 

 

 

Linear interpolation 

Perhaps the most naive model is the linear interpolation in one unit-interval and 

the extension of this to the other unit-intervals applying the functional equation.  

I used the most suggestive unit-interval h=0..1 for linear interpolation, such that 

z0(h) =linear z0(0)+ h ∙(z0(1)-z0(0)) (for the graphics in steps of 1/20) .  

Then the interpolations for the other intervals were computed using the func-

tional equation z(h+1) = 4z(h) . This gives the red curve in the graph. Obviously the 

results are incompatible with the blue curve of the regular tetration.  
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A nice effect of this is that we have now no crossing of the real axis, and still the 

extrapolations into the other unit-intervals near the fixpoint are roughly spirals. 

However, the form of the spiral does not really become smoother when the fix-

point is approached. Here is a bit more detail: 
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We see, that the form of the spiral is so distorted, that we even get changes be-

tween convex and concave segments of the partial curves.  

I think, this is not acceptable, so linear interpolation is surely no serious candidate 

for the tetration with continuous heights. 

 

 

The polynomial interpolation (by eigen-decomposition of the trun-

cated Carlemanmatrix) 

 

But what, if we take some polynomial of higher order? This leads to the diagonali-

zation of a carleman-matrix, truncated to the desired order. The mathematical 

model might be much more appropriate than that of linear interpolation (which 

can be seen as an polynomial of order 1) but is still imprecise because the trunca-

tion of the carleman-matrix introduces numerical and systematic errors in an in-

tractable way into the computation of the eigen-system. 

Just ignoring this, in the first view it is a straightforward method for the tetration 

with continuous heights. Also it gives very reasonable results in certain intervals! 

This is simply the eigensystem-decomposition of the truncated Carlemanmatrix 

for the exponentiation as we would compute it with any common mathematical 

software program.  

Assume some size n=16x16 or n=32x32 or as high as possible and very(!) high 

floatingpoint precision (we have to diagonalize a Vandermonde matrix!) and com-

pute the fractional powers of the Carlemanmatrix/the matrix-operator by diago-

nalization and fractional powers of its eigenvalues. Then this matrix-operator in 

its fractional power give the coefficients for a power series for the tetration of 

fractional height in the sense which I tend to call "polynomial interpolation" be-

cause of the underlying idea of polynomials of finite orders, which are introduced 

by the characteristic polynomial of the finitely-truncated Carlemanmatrix. 
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In my opinion the diagonalization of the infinite Carleman-matrix for exponentia-

tion should be the best step into the matter and is in principle realized in the 

"regular tetration"-method. However, for that method we introduce a recentering 

of the power series for exponentiation towards the fixpoint - and the method is 

thus fixpoint-dependent and its power series get complex coefficients and might 

also have very limited or zero radius of convergence. And thus, also the computed 

values are dependend on the choice of the selected fixpoint. As said above, it is 

also unsatisfactory because of the observations shown in the first picture. 

But as a first step into the matter, truncating the Carleman-matrix to a feasible 

finite size, we can do a diagonalization, just quick & dirty. As said, this results in a 

matrix of real coefficients for the power series and thus the fractional iteration of 

real numbers towards positive infinity remains in the real numbers.  

It could be expected (and is much interesting), that this polynomial interpolation 

is much smoother than the linear interpolation and inherits still the advantage, 

that the fractional iterates seem to not to cross the real axis, and can such way 

represent a more reasonable approximation (or even implementation) especially 

to the tetration over the real numbers.  

Here is a plot of that polynomial interpolation using matrix-size 32x32 (where 800 

digits float-precision were required for calculation of the eigen-decomposition). 

The red curve shows the trajectory of the tetration, implemented by polynomial 

interpolation, and the blue curve shows that of the "regular" tetration: 
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Unfortunately, and still unsatisfying, we have the distortion of the spiral near the 

fixpoint like in the linear interpolation. 

The more serious (because being "systematic") problem of this approach lies in 

the fact, that the eigenvalues (and thus their fractional powers) of this finitely 

truncated matrix-operator are heavily dependend on the truncation size, and I did 

not find any pattern which should allow the extrapolation to the case of the infi-

nite size of the matrix.  Only such pattern (and then the mathematical derivation) 

would allow to control and limit the unavoidable approximation errors.  
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The "Kneser" interpolation 

There exists a further proposal for the interpolation towards a continuous tetra-

tion which is based on a construction of Hellmuth Kneser in the 40ies of the previ-

ous century. I call this here "Kneser-interpolation". The mathematical method 

starts with the "regular tetration" (as given in the first chapter above) and im-

proves it then by some mappings and iterations to modify the power series, but 

which I did not yet really understand. In the Tetration-Forum two members 

("Mike4"and Sheldon Levenstein) provided code for the software package 

Pari/GP, which allows to actually compute values for that interpretation of tetra-

tion. (Here I used the code of the latter member) . 

Surprisingly, the result, which starts with computations along the method of regu-

lar tetration and improves then the found power series, becomes finally very simi-

lar to that of the polynomial interpolation (as just described before). Differences 

in the current example were in the order of 1e-7 and are thus not visible in the 

plot.  

Here is the picture, the red curve is the trajectory of the "Kneser-interpolation" 

and the blue curve that of the "polynomial interpolation"-method: 
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Here is a graph which shows the smallness of differences, in terms of absolute 

value of the differences of the values computed for each of the two methods. The 

blue line is drawn based on the computation with 32x32-matrices the magenta 

line based on 48x48- and the green line on 64x64- matrices: 

 

 

The different shapes between the negative and positive height unit-intervals 

might indicate some method-artifact, but which I cannot trace down at the mo-

ment. 

 

 

But much more important: in the previous picture it is much surprising, that even 

the unwanted, unsatisfactory effect of inconstancy of the convex/concave-shape of 

the trajectory near the fixpoints which occurs as weakness in the "polynomial-

interpolation" matches exactly that trajectory of the Kneser-interpolation.  The 

second picture shows that this improves with size of the polynomial-method ma-

trices. 

Concluding question: Does the Kneser-method simply define the limit of the 

polynomial interpolation, where the truncation-size goes to infinity? 

 

 

Gottfried Helms, 12.10.2013 


