
Exploring the eigen-system of the tetration-matrices 
 

Why to analyze the eigensystem of Bs?  

If we want to perform the analysis of tetration based on eigenanalysis, then we 

rely on finite dimensional matrices which were computed by numerically very 

difficult procedurs in the eigensystem-solver. Although we might assume, that 

for the convergent cases our found matrix is a good approximate, we cannot quantify this 

approximation, and thus not the error. Also for extending the range of admissible baseparameter s it 

seems needed to have such an analytical description, from where then analytic continuation can be 

derived and be well founded. So it seems essential for serious progress to decode the structure of the 

eigenmatrices and of the eigenvalues. Here I show a short step into this matter. 

I'll analyze the eigensystem for one case t=1.7, baseparameter s=t
1/t

, to make things simple.  

t= 1.7 

 s = t
1/t

 = 1.36633813256 

 log(t) = 0.530628251062 

From my previous articles I'll take the convention: 

 B = matrix(dim,dim,r,c,c
r
/r!)  // r,c denoting row,column-index, zero-based 

 Bs = 
d
V(log(s)) * B   // where 

d
V(x) is a diagonal vector of consecutive powers of x 

     // V(x) = column(1,x,x
2
,x

3
,...) and  

d
V(x) = diag(V(x)) 

and Bs performs the integer-tetration-iteration 

 V(x)~ * Bs = V(s
x
) ~  

 V(1)~ * Bs = V(s) ~  

 V(1)~ * Bs
y
 = V(s^^y) 

I also use here the following notation for Bs' eigen-decomposition for a fixed parameter s: 

 Bs = W * E * W
-1

  

 W
-1

 * Bs = E * W
-1

  

where E is the diagonal-matrix containing the eigenvalues. Note that W and E depend on the parameter 

s here. 

 

Settings according to my hypotheses: 

 ek are the k'th eigenvalues of Bs, which I assume are log(t)
k
  

 Let W be the eigenvector-matrix of Bs  

 W
-1

 contains the powers of t, so I extract them from the coefficients. Documented as t^0, t^1,...  

According to the last (very trustworthy) observation, that W
-1

 contains the consecutive powers of t, I 

separated these components, calling the remaining matrix Q (or also "kernel" of W): 

 W
-1

 * 
d
V(t)

-1
 = Q  

so that the previous 

 W
-1

 * Bs = E * W
-1

   

becomes 

 Q * 
d
V(t) * Bs = E * Q * 

d
V(t)   

where Q is now independent of s (or t).  

Note that Bs already contains the parameter t in the following form: 

 Bs = 
d
V(log(s))*B = 

d
V(log(t 

1/t
)) * B = 

d
V(log(t)/t)) * B  

and 

 
d
V(t) * Bs = 

d
V(t) * 

d
V(log(t)/t)) * B = 

d
V(log(t)) * B 

Edit-note: 

1) Update in tabledata!

2) Error concerning Q

statements striked out



so that this matrix-equation can be reduced to one of the following forms, where I do not know 

currently, which is the most useful one  

 Q * 
d
V(log(t)) * B = E * Q * 

d
V(t)   

 
d
V(log(t)) * B * 

d
V(t)

-1
 = Q

-1
 * E * Q   

 E
-1

 * Q * E * B =  Q * 
d
V(t)   

 E B 
d
V(t)

-1
 = Q

-1
 * E * Q    

A problem for these formula exist in that in the limit of infinite dimension the sequence of eigenvalues 

approaches zero according to my hypothesis and thus E should not be invertible in a first view.  

 

The following observation concerning independence of Q from base-parameter s was wrong : 

A very interesting, general, observation is, that the kernel Q of the eigenvector-matrix W
-1

 seems to be 

constant for any parameter t (and the subsequent computed base-parameter s),  so the same Q-matrix is 

then valid for all parameters s in tetration (given the usual bounds for s, resp t.) 

Example: (Q still dependent on parameter t) 

 Q = W
-1

 * 
d
V(t)

-1
  

VecNr Update: the previously documented table was quite imprecise 

0 1 1 1 1 1 1 1 

1 0 1 2 3 4 5 6 

2 0 1.0 1.11460 0.34382 -1.31234 -3.85390 -7.28085 

3 0 1.0 0.33009 -1.27044 -3.06237 -4.30643 -4.26337 

4 0 1.0 -0.36595 -2.08416 -2.73524 -1.49410 1.87003 

5 0 1.0 -0.98470 -2.28881 -1.34707 1.77055 5.82374 

6 0 1.0 -1.53611 -2.03517 0.42514 4.12661 6.36486 

7 0 1.0 -2.02904 -1.44101 2.14616 5.08344 4.10682 

8 0 1.0 -2.47160 -0.59679 3.55094 4.64078 0.28767 

9 0 1.0 -2.87293 0.43478 4.49277 3.03516 -3.86546 

10 0 1.0 -3.24682 1.63276 4.88987 0.54444 -7.40559 

11 0 1.0 -3.60967 3.02164 4.64016 -2.59963 -9.55913 

grey shaded cells are different in 5'th place using dim=72 

So this is the matrix, for which I try to decode the compositions of rows. 

 

 



An explicit formal description for the first two rows of Q, associated to the eigenvalues 1 and log(t), 

such that  

 W
-1

[0,] * Bs =     1    * W
-1

[0,] or Q[0,]* 
d
V(t) * Bs =     1    * Q[0,1]* 

d
V(t)  

 W
-1

[1,] * Bs = log(t) * W
-1

[1,] or Q[1,]* 
d
V(t) * Bs = log(t) * Q[0,1]* 

d
V(t)  

 

can easily be derived. To show the idea which I am following here to get hints for the structure of the 

following rows in Q. 

 

Denote the guessed version for Q as Q^  and the version, which occurs by acutally computing the rhs 

as R, where R should equal Q^, if the proposition is correct. 

 

Example: (the columns [e0,e1] , [1,1], [t^0,t^1] are meant as diagonal matrices) 

first two rows: 

Q * 
d
V(t) *Bs = E * R * 

d
V(t) 

 

            

 

      *  

 

 * *  

 

The deviations from integers in the result R were so small, that I just approximated these 

values to integers for display. 

 
In the above example we see, that the input-vectors are identical to the output-vectors except the 

scaling by e0 = 1, e1 = log(t), in the first an second row, where e1 is assumed to be the second 

eigenvalue  

  e1 = eigenvalue_1 = log(t) by hypothesis  

So this is obviously a solution for the first two rows for the left eigenmatrix (=inverse of the right 

eigenmatrix W) resp. its kernel Q. 

 

 

 

Extrapolating from the first two correct rows, the next proposal to explore this further was, that 

possibly the Pascal-/Binomial-matrix P is in any way part of Q  

It is obvious from the numerical display of Q, that this is not the case, but possibly one gets hints for 

how to search further. See the interesting result of the computation.  

The very good approximation to the integer entries of the matrix VZ is so much convincing, that P is 

in fact not part of Q, what is the bad news. 

The good news is possibly, that the hypothesis concerning the structure of the set of eigenvalues as 

well as of the powers of t in W
-1

 has a very good backing (given I didn't just do some trivial cancelling 

here, which also may be possible) 

 

 

 



Example: 

 The column E is meant as diagonal-matrix: E=diag ( e0, e1,...) 

   containing the assumed structure for eigenvalues ek =log(t 
k
) 

 The column [0!,1!,2!...] is meant as diagonalmatrix F 

 The column [t0,t1,t2,...] is meant as diagonalmatrix 
d
V(t) containing consecutive powers of t 

 P is the Pascal-matrix, containing the binomial-coefficients 

Here the matrix-product F*P~ was tried, whether it is the eigenvectormatrix Q  

  

          

 

* *  

 

* *  

 

So the result does not help much from the approach itself. But it has another impact. 

The factorial-scaling of P constitutes in fact the coefficients, which occur with derivatives. So this 

accidental result gives raise to a formulation about the values of the derivatives with respect to x: 

 
m

diag)m(

)dx(

)Bs*)t(V*~)x(V(d
 at x=1. 

For a column c, where the r'th row-entries of Bs may be denoted as br and br's structure explicated: 
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By rules of derivatives this is for the m'th derivative with respect to x: 
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Since the terms with negative factorials in the denominator vanish, we may start with the index r=m 
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We re-index this with q=r-m and extract constant factors: 
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Now the sum is an exponential-series, giving t 
cx

 and we position the variable x nearest to t: 

 
cxmm

cxmc

)t()tlog(c

t)tlog(

=

=

 

which is then at x=1, using the eigenvalue-notation for entries of E and the powers of t fo entries of 
d
V(t) : 

 
cm

m

cmm

t*c*e

t)tlog(c

=

=

 

This reflects perfectly the numerical result of the result-matrix with m as row-index and c as column-

index. 

 

 

 

Well, this was a nice oberservation, but there is not much progress concerning the initial question of 

the structure of the eigenmatrix-kernel Q. Here it is again: 

Example:    

 Q = W
-1

 * 
d
V(t)

-1
  

VecNr Update: the previously documented table was quite imprecise 

0 1 1 1 1 1 1 1 

1 0 1 2 3 4 5 6 

2 0 1.0 1.11460 0.34382 -1.31234 -3.85390 -7.28085 

3 0 1.0 0.33009 -1.27044 -3.06237 -4.30643 -4.26337 

4 0 1.0 -0.36595 -2.08416 -2.73524 -1.49410 1.87003 

5 0 1.0 -0.98470 -2.28881 -1.34707 1.77055 5.82374 

6 0 1.0 -1.53611 -2.03517 0.42514 4.12661 6.36486 

7 0 1.0 -2.02904 -1.44101 2.14616 5.08344 4.10682 

8 0 1.0 -2.47160 -0.59679 3.55094 4.64078 0.28767 

9 0 1.0 -2.87293 0.43478 4.49277 3.03516 -3.86546 

10 0 1.0 -3.24682 1.63276 4.88987 0.54444 -7.40559 

11 0 1.0 -3.60967 3.02164 4.64016 -2.59963 -9.55913 

grey shaded cells are different in 5'th place using dim=72 

The problem is still to find an analytical description for the next rows. Note, that the scalings of the 

rows are arbitrary; I just scaled them so that the leading entry is 1. It seems, they are composed of 

combinations of more simple row-vectors, for instance it looks suspiciously as if they represent 

polynomials of order of their row-index. But some obvious compositions didn't work, so this is still an 

open question for research, and I'm stuck here. 

Gottfried Helms, 29.8.2007 



Update 2: 

With dimension dim=96 and float-precision I found the following improvement: 

 

        

 1 1 1 1 1 1 1 

 0 1 2 3 4 5 6 

 0 1.0 1.1146 0.34383 -1.3123 -3.8539 -7.2809 

 0 1.0 0.33010 -1.2704 -3.0624 -4.3064 -4.2634 

 0 1.0 -0.36595 -2.0842 -2.7352 -1.4941 1.8700 

 0 1.0 -0.98470 -2.2888 -1.3471 1.7706 5.8237 

 0 1.0 -1.5361 -2.0352 0.42514 4.1266 6.3649 

 0 1.0 -2.0290 -1.4411 2.1461 5.0834 4.1071 

 0 1.0 -2.4712 -0.59781 3.5497 4.6419 0.29215 

 0 1.0 -2.8693 0.42431 4.4863 3.0548 -3.8280 

 0 1.0 -3.2294 1.5717 4.8845 0.67969 -7.2623 

 0 1.0 -3.5565 2.8037 4.7236 -2.1059 -9.3610 

 

The very interesting aspect is, that if the rows are combined with binomial weights,  

 test = P
-1

 * Q 

then we get a very simple pattern: 

Example: test 

        

 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

 -1.0 0 1.0 2.0 3.0 4.0 5.0 

 1.0 0 -1.8854 -4.6562 -8.3123 -12.854 -18.281 

 -1.0 0 1.9863 5.6981 11.875 21.255 34.579 

 1.0 0 -1.9987 -5.9394 -13.360 -26.392 -47.762 

 -1.0 0 1.9999 5.9893 13.829 28.716 55.648 

 1.0 0 -2.0 -5.9984 -13.959 -29.588 -59.472 

 -1.0 0 2.0 5.9998 13.991 29.879 61.080 

 1.0 0 -2.0 -6.0 -13.998 -29.967 -61.690 

 -1.0 0 2.0 6.0 14.000 29.992 61.903 

 1.0 0 -2.0 -6.0 -14.000 -29.998 -61.972 

 -1.0 0 2.0 6.0 14.000 30.000 61.992 

 

 


