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1. Computation 

1.1. Intro 

Matrices can be exponentiated1 and also be logarithmized (if certain conditions 

are satisfied). With this also a "matrix-power of a matrix" AB can be defined using 

this matrix-logarithm and when the exponentiation is resolved into the appropri-

ate powerseries for its argument.  

In a recent thread in the sci.math-newsgroup we had a discussion about the detail, 

whether it is more meaningful to define AB as Exp(Log(A) * B) or Exp(B * Log(A)). 

For this discussion I studied the whereabouts using the Pascalmatrix as an exam-

ple and came across the following very astonishing heuristiscs and perspectives, 

which – concerning the original question – also strongly suggest to use the 

Exp(Log(A) * B)-version…  

 

Definitions 

For the definition of the matrix-exponential the obvious pattern is the exponen-

tial-powerseries 

(1.1.1.) exp(x) = 1 + x/1! + x2/2! + x3/3! + … 

applied to a square matrix-parameter X 

(1.1.2.) Exp(X) = I + X/1! + X2/2! + X3/3! + …  // use I for identity-matrix 

which, if X is triangular or is nilpotent, gives exact values for each entry of the re-

sulting matrix. Similarly, we can define the matrix-logarithm2 using the mercator-

series with a square matrix-argument 

(1.1.3.) Log(X) =  (X–I)/1 – (X–I)2/2 + (X–I)3/3 - … 

if this series converges, or the better converging series 

 let F = (X–I)*(X+I)-1   

(1.1.4.) Log(X) =  2*(F/1 + F3/3 + F5/5 +  … )  

 

In the following I'll discuss the lower triangular "Pascalmatrix" P as argument for 

the powerseries. For the logarithmic series this is a special convenient case, since 

due to the subtraction P–I we sum powers of a nilpotent lower triangular matrix, 

whose diagonal is zero and the matrix-logarithm series is then finite for any finite 

dimension of the matrix. The matrix-logarithm of P is then a nilpotent matrix, too, 

which in turn reduces the exponential-series to a finite sum giving exact values for 

any finite matrix size. 

The matrix-power of a matrix may then be defined as 

(1.1.5.) A B = Exp( Log(A)*B) = I + (Log(A) B)/1! + (Log(A)*B)2/2! + …  

where the findings in the following article suggest that the order of the multiplica-

tion Log(A)*B might be preferred. This appears because the results are meaningful 

in and consistent with a wider context of similar scalar functional relations. 

 

                                                 

1 For considerations concerning convergence, optimization see for instance [Loan] or [MolerLoan] 

2 see, for instance, [Cardoso] 
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1.2. The (matrix)-logarithm of P 

The matrix-logarithm of P can be defined for any finite size. Example for size 8x8: 

(1.2.1.) PL = Log(P)  

       = matrix r,c=0..inf ( r     if r=c+1)  

 

 

(see [Helms,PL], [Edelman]) 

Since the entries are constant if the size is changed, we may also define the infinite 

sized matrix by this pattern. 

1.3. A diagonalization-formula for P  

For P of any finite size we cannot find a proper diagonalization satisfying the for-

mula 

(1.3.1.) P~ = W * diag([λ0, λ1 , λ2 , … ]) * W-1  

since all eigenvalues are 1 and the sets of eigenvectors are degenerate. (but see 

Appendix 2.3) 

But for the case of infinite size we can find a solution with a non-invertible matrix 

W such that 

 P~ * W = W * diag([λ0, λ1 , λ2 , λ3 , … ])  

Namely 

(1.3.2.) P~ * W  = W * diag([1,  e,   e2,  e3, …  ]) 

   = W * dV(e)  

   = W * E  //  give it the shorter name E 

where W is the factorially scaled vandermondematrix 3  

(1.3.3.)  W = matrix r,c=0..inf ( c r/r! ) 

 

With this we can calculate parallel with P and E , according to the diagonalization-

rules applied to powers, linear combinations and such functions of P and E , which 

are defined by a powerseries-expansion. 

Examples: 

(1.3.4.) P h ~ * W  = W * E h  

 (P + P2) ~ * W  = W * (E + E2)  

 Log(P)~ * W = W * Log(E) = W * diag([0,1,2,3,4,…])  

 Exp(P)~ * W = W * Exp(E)  

 

                                                 

3  Note, that a rescaled version of W is known as "Bell-" (or: transposed "Carleman-") ma-

trix for the function exp(x) such that 

 V(x)~ * W = V(e x)~   

See also [wikipedia] 
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1.4. Tetrates (iterated exponentials) of P 

The tetrates of P may be recursively defined by 

(1.4.1.) P^^2 = P P = Exp( Log(P)*P) 

(1.4.2.) P^^h+1 = P P
^^h

  = Exp( Log(P)*P^^h) 

where also 

(1.4.3.) P^^1 = P  

(1.4.4.) P^^0 = I  

We cannot define the inverse operation since the matrix-logarithm of P is not in-

vertible. 

We get first PL * P: 

(1.4.5.) PL*P 

 

 

then P^^2  

(1.4.6.) P^^2 = Exp(PL*P) =  

 

 

then P^^3  

(1.4.7.) P^^3 = Exp(PL*P^^2) =  

 

 

then P^^4 

(1.4.8.) P^^4 = Exp(PL*P^^3) =  
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The first observation is, that all tetrates so far can be reduced to a simple defini-

tion based on the first column only, where the entries of the h'th tetrate are de-

noted with a small p, the height parameter h and row,col-indexes r,c  

 

(1.4.9.)  p(h)
r,c = p(h) r-c,0 * binomial(r,c)  

 

that means, only the first column has "significant" values and the subsequent col-

umns are downshifted repetitions, scaled by binomials. See the following repre-

sentation of P^^2 as hadamard-product (elementwise multiplication) 

 

(1.4.10.) P^^2 = 

 =  

 = Q2 ¤ P = 

 =     ¤      

 

This hadamard-structure inherits to all other tetrates of P, as well as to that of 

infinite height (see below). For the interpretation of the numbers along column 0 

see the reference to [OEIS], A000248 and [Comtet], pg 91, par. 43, (keywords "for-

ests", "idempotent maps") 

1.5. Use of coefficients for exponential generating function 

If we use the factorial scaled tetrates of P  

 fPF ^^h = F-1 * P^^h * F   

and a further similarity-scaling by dV(c), where c = log(b) then the colsums give 

 V(1)~ * (  dV(c)  fPF^^h dV(1/c))   = expb°h(1)*V(1)~  

 V(1)~ * (  dV(c)  fPF^^h [,0])    = expb°h(1)  

for instance b= 2, c = log(2),  

 V(log(2))~  fPF ^^3 [,0]    // "[,0]" means "first column" using zero-based index 

  = 2^^3  

  = 2^2^2 = 16 

Unfortunately, this works only for integer iterates. 

On the other hand, this seems to give a first, very simple, however limited, access 

to the change-of-base-problem: for a fixed iteration-height it is easy to change the 

base by simply providing another vector of logarithms… 

See more on this in chap 2.1 and 2.2 
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1.6. P tetrated to infinite height 

It is much interesting, that we can define the infinite case, P^^oo as limit using a 

simple pattern 

(1.6.1.) PP = lim h->inf P^^h : =matrixr,c=0..inf

( )

( )
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>

>≥
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−+

=+

−−

−

rcfor

crfor
c
r

cr

cforr

cr

r

0

01

01
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1

 

 

then PP looks like 

(1.6.2.) PP = lim h->oo P^^h =   

 

and also has the "hadamard"-pattern 

 

 

 

Then we have also 

(1.6.3.) P PP  = PP   // fixedpoint-formula 

 Log(P)*PP = Log(PP)  

which finally leads to the matrix-analogue of the h( )-function 4 

(1.6.4.) Log(P) = Log(PP) * PP-1  

 P = PP PP-1

  

(1.6.5.) PP = h(P)  

 

and we find, that indeed if evaluated,  

(1.6.6.) PP PP-1

 = P  

 

                                                 

4 see [Galidakis] or [Knoebel] 
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(1.6.7.) Log(P)*PP = Log(PP)  

 

   = 

*    

 =    

  

 

 

The possibility to define such a matrix PP is surprising in the view of the diago-

nalization representation above. It means, that on the lhs we have a completely 

harmless looking lower triangular matrix with units in its diagonal, and on the rhs 

the tetrate of infinite height for parameters which are powers of e, and thus all 

except the first (e0=1) exceed the upper bound for convergent infinite tetration η= 

e1/e . The entries of the according tetrates of E are 

 h=1 E^^1 = diag(1, e, e2, e3, …) 

 h=2 E^^2 = diag(1, ee, e2e2

, e3e3

, …) 

 h=3 E^^3 = diag(1, eee

, e2e2e2

, e3e3e3

, …) 

  … 

 h E^^h = diag(1, e^^h, (e2)^^h, (e3)^^h, … ) 

where, if h->inf also all entries diverge to inf. 

Then, from the fixedpoint-formula (1.4.3), we expect, that PP resembles the tetra-

tion-fixedpoint for the exp()-function; the first being about 0.318131 + 1.337235*I  

and having an imaginary component!  

 

Numerical computations with powers of P, say Plog(m), where m=sqrt(2) or (for 

better convergence) m=1.1 (reflecting exp(log(m))=m as parameter of the E-

diagonalmatrix on the rhs of the diagonalization-formula) approximated the ex-

pected values surprisingly well.  

Using m=sqrt(2) I get  

 h = 1  E^^1≈ diag(  1.0  1.414213  2.0  2.8284  3.99999898  5.6566  7.98577  10.912…) 

exact         = diag(  1,        m,             2,     2m,         4,                     4m, …)  

 

 h = 2  E^^2 ≈ diag(  1.0  1.63252  3.9973  16.64       38.6719, … )  

exact          = diag(    1,       mm,         22 ,       (2m)2m,      44 ,       …)  
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For the limit-case h->inf we need only h>matrixsize, since the entries of the matrix 

are constant in the h0 x h0-submatrix for any h>h0 . Moreover, the matrix PPm to 

the basis m can exactly be computed as similarity-scaling of the original matrix PP 

(the same as Pm from P): 

(1.6.8.)  using μ = log(m) 

  P 
μ

 = 
d

V(μ) * P * 
d

V(1/ μ)   

  PPm = 
d

V(μ) * PP * 
d

V(1/ μ) 

Thus 

(1.6.9.) PPm := matrixr,c=0..inf

( )

( ) )log(;

0

01)(

01

1)(

1

m

rcfor

crfor
c
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cforr
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−
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With this for m=sqrt(2) and different sizes for the matrices: 

(1.6.10.) m=sqrt(2) h>dim  Edim
^^dim+1   

 

 E16
^^17 ≈ diag( 1.0 1.9416   6.520 E  1   –4.325 E   3 , … ) 

 E32
^^33 ≈ diag( 1.0 1.9897   2.992 E  4  –1.722 E 10 , … ) 

 E64
^^65 ≈ diag( 1.0 1.9993   4.75   E 13  –1.27   E 24 , …) 

exact E^^inf     = diag( 1.0 2.0000         <inf>             <inf> ,       …) 

 

 

Using a base nearer at 1 we should get more finite terms for the E^^inf – expression, 

according to the number of powers mk , which are smaller than e1/e. Here I use 

m=1.1, whose powers 1, m, , m2 and m3 are smaller than e1/e but m4 is greater and 

thus (m4)^^inf is an infinite expression: 

(1.6.11.) m = 1.1 

 

 E64
^^65 ≈ diag( 1.0, 1.11178201104, 1.27515965772, 1.56385493139,  3.1393,  -561.07, …) 

exact E^^inf   = diag( 1.0, 1.11178201104, 1.27515965772, 1.56385493462,      <inf>       <inf>  …  ) 

 

 

I've currently no further idea, what this does tell me nor what this could be useful 

for. 
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1.7. Powers of PP (=P^^inf) 

Also we have a very interesting, since simple, pattern with powers of PP: 

 

(1.7.1.) PP2 =  

 

(1.7.2.) PP3 = 

 

 …. 

(1.7.3.) PP-1 = 

 

 

The much interesting aspect is, that the sequence of entries in the first column 

follow a very simple pattern: 

(1.7.4.) PP1  => 1,1,3,16,125,… =        (r+1) r-1  

 PP2  => 1,2,8,50,432,… =   2*(r+2) r-1  

 PP3  => 1,3,15,108,1029,… =   3*(r+3) r-1  

 ... 

(1.7.5.) PP-1  => 1,-1,-1,-4,-27,-256,… = –1*(r-1) r-1  // where 00 = 1 defined 

 PP-2 => 1,-2,0,-2,-16,-162,... = –2*(r-2) r-1   

We might formally insert the definition: 

(1.7.6.) PP0  => 1,0,0,0,0,0,…  =   0*(r   ) r-1  // where 0*0-1 = 1 defined 

 

With this we have the complete definition 

(1.7.7.) PPk
m := matrixr,c=0..inf

( )

( ) )log(;

0

0)(*

0*

1)(

1

m

rcfor

crfor
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=
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  where we define 00=1, 0*0-1=1 
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1.8. Exponential of PP  

One more step might be of interest: what does the exponential of PP look like? 

We get, by rational arithmetic on Exp(PP – I) ,  

(1.8.1.) Exp(PP – I) = 

 

where also 

 Exp(PP) = exp(1)*Exp(PP-I) 

The matrix has still the structure of the hadamard-product of a basic triangle 

which is determined by its first column only and the binomial-matrix P. 

The numbers in the (only significant) first column are again known to OEIS, they 

are the coefficients of the exponential-generating-function of exp(-LW(-x)/x – 1) . 

(see Appendix 3.4).  

That means, if we use 

 EP = exp(1) * Exp( PP – I)  

 fEPF = dF-1 * EP * dF   

We get 

 V(x)~ * fEPF = exp(-LW(-x)/(-x) ) * V(x)~  

or differently written 

 Vf(x)~ * EP = exp(LW(-x)/(-x) ) * Vf(x)~  
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2. Application for tetration 

2.1. General 

The observation mentioned in chap 1.5 leads to another set of powerseries for 

tetration.  

For the case of infinite height it occurs empirically, that we have a range of admis-

sible bases in the usual sense 1 < b ≤ e1/e  , but for the case of finite height this 

might look differently. Assume a base b and denote c=log(b), then the following 

table gives the beginning of the powerseries in log(b) (!) for few small heights; 

 

 h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=7 .. h->inf 

c0/0! * 1 1 1 1 1 1 1 1 … 1-1 

c1/1! * 0 1 1 1 1 1 1 1 … 20 

c2/2! * 0 1 3 3 3 3 3 3 … 31 

c3/3! * 0 1 10 16 16 16 16 16 … 42 

c4/4! * 0 1 41 101 125 125 125 125 … 53 

c5/5! * 0 1 196 756 1176 1296 1296 1296 … 64 

c6/6! * 0 1 1057 6607 12847 16087 16807 16807 … 75 

c7/7! * 0 1 6322 65794 160504 229384 257104 262144 … 86 

c8/8! * 0 1 41393 733833 2261289 3687609 4480569 4742649 … 97 

c9/9! * 0 1 293608 9046648 35464816 66025360 87238720 96915520 … 108 

… … … … … … … … … … … 

 

Here we see, how the sequence of series converges (in a completely unusually and 

unexpected way) to a limit-series when h is increased: the coefficients at the be-

ginning remain constant for heights h->oo. This is a special property which I've not 

seen with other series in the context of tetration. 

We see in the column for the limit h->inf the known powerseries for b1/b with the 

known range of convergence |b|≤ e1/e  which agrees with all expectation. 

The series at finite heights, however, show "defects" from a current indexposition 

k=h on (marked orange); and for all higher indexes this defect increases. So possi-

bly we can even show, that this family of series has infinite radius of convergence 

if h is finite. 

To get another impression, here is the sequence of series for base b=2, 

c=log(2)~0.693… 

 h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=7 .. ->inf 

1/0! * 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 … 1-1 

1/1! * 0 0.69314718 0.69314718 0.69314718 0.69314718 0.69314718 0.69314718 0.69314718 … c*20 

1/2! * 0 0.24022651 0.72067952 0.72067952 0.72067952 0.72067952 0.72067952 0.72067952 … c2*31 

1/3! * 0 0.055504109 0.55504109 0.88806574 0.88806574 0.88806574 0.88806574 0.88806574 … c3*42 

1/4! * 0 0.0096181291 0.39434329 0.97143104 1.2022661 1.2022661 1.2022661 1.2022661 … c4*53 

1/5! * 0 0.0013333558 0.26133774 1.0080170 1.5680264 1.7280291 1.7280291 1.7280291 … c5*64 

1/6! * 0 0.00015403530 0.16281532 1.0177113 1.9788915 2.4779659 2.5888714 2.5888714 … c6*75 

1/7! * 0 0.00001525273 0.096427783 1.0035384 2.4481248 3.4987331 3.9215389 3.9984127 … c7*86 

1/8! * 0 0.00000132154 0.054702864 0.96979603 2.9884035 4.8733548 5.9212900 6.2676415 … c8*97 

1/9! * 0 0.00000010178 0.029883675 0.92077561 3.6096395 6.7201179 8.8792320 9.8641450 … c9*108 

… … … … … … … … … … … 
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For h->inf the resulting series is known to be divergent; for h<4 we see that the 

coefficients decrease after a certain maximum; and so the series for finite heights 

should be convergent if log(b)=c < 1. and possibly even for higher c. I assume it can 

be shown, that this occurs at some index in the series for any finite height – but I 

could not yet study this detail. 

Here is an image to illustrate the progressive index, from which on a the coeffi-

cients of a powerseries for a certain h (read along the h'th column) begin to de-

crease. See the "nose" which nicely mark the position at which the absolute value 

is smaller than 1e-9 For illustration I used the convergent base b=sqrt(2); but in 

principle, for higher bases there should only a scaling (or: shifting of the related 

indexes), occur: 

Image 

 

 

One remarkable difference to the type of series, which I defined in [ExactEn-

tries]5, is already, that the constant remains the same for all heights, while in the 

series discussed in [ExactEntries] the constant in the series for height h is always 

b^^(h-1). This must have an impoact also for the fractional iterates. 

For h=2 the series, found by the two methods begin with the coefficients, shown in 

the columns, where I inserted x=1 for the top-parameter in the [ExactEntries]-

version, which does not occur in the version of this article 

 [exact entries] [this article] 

1* b 1 

1/1!* b log(b)  (log(b)) 1 log(b)  

1/2!* b log(b)² (log(b)+log(b)²) 3 log(b)2 

1/3!* b log(b)³ (1log(b)+3log(b)²+1log(b)³) 10 log(b)3 

1/4!* b log(b)
4 

(1log(b)+7log(b)²+6log(b)³+1log(b)
4
) 41 log(b)4 

 … … 

 

 

 

                                                 

5 see refernece in chap 3 
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2.2. Fractional iteration 

Using the binomial-method for interpolation we can even establish a method for 

the full fractional tetration; however I didn't study the convergence-conditions 

yet. Let's call the shown tables of coefficients as matrix M; the list of first columns 

of tetrated pascalmatrixes:  

 M = concat(P^^0
[,0] , P

^^1
[,0] , P

^^2
[,0] , …] 

such that 

 V(log(b))~ * M = [1, b, b^^2, b^^3, ...]  

Then the binomial-formula for fractional tetration requires two binomial composi-

tions of the columns of M: 

 M1 = M * P-1 ~  

reflecting the part 

   























−= ∑

=

−
k

j

jjk

k b
j
k

a
0

^^)1(  

in the known binomial formula for fractional tetration; and the coefficients for the 

powerseries of b^^h for fractional h is then the first column of 

 Th =M1 * Bin(h) 

where Bin(h) is the column-vector of binomials 

 Bin(h) = colvectork=0..inf( binomial(h,k))  

reflecting the composition of b^^h by 

   ∑
=







=

inf

0

^^

k

k

h
a

k
h

b  

in the binomial-formula. 

Note, that until now Th is a vector of coefficients which is still independent of the 

base for tetration!  

We will have b^^h now by 

 b^^h = V(log(b))~* Th  

Then not only the powerseries for integer heights look different from my previous 

approaches, but also that for the fractional iterates have a completely different 

shape. 

 

2.3. Conclusion 

If I got things right so far, then this is another very remarkable result: in all formu-

las concerning tetration, which I came across, the base-parameter was nearly in-

tractably involved in the coefficients of the powerseries. If all the above is correct 

(at least for a certain range of parameter b), then we have a much independent 

family of powerseries for (and thus also a much different access into) the problem 

of tetration. 
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3. Appendix 

3.1. Standard matrices 

The involved standard-vectors and matrices are as follows. All matrices/vectors 

are meant to have infinite size. 

 V(x) :=  columnr=0..inf[1,x,x2,x3,...xr,...] 

  an infinite "vandermonde" (column-) vector of a general x  

 V(x)~ := the transpose ; the symbol is taken from the convention in Pari/GP 

 dV(x) := the diagonal arrangement of V(x) 

  

 The column- and rowindices are beginning at zero 

F   := diag(0!,1!,2!,...) 

f    := F-1 = diag(1, 1, 1/2!, 1/3!,1/4!,...) 

  allows to define the exponential-series 

Vf(x) = f*V(x) = column r=0..inf[1 , x , x2/2! , x3/3! , … xr/r! , … ]  

 Matrices  

VZ := matrixr=0..inf,c=0..inf[cr]  

  := [V(0),V(1),V(2),...]  

  the collection of V()-vectors of consecutive parameters 

  

P   := matrixr=0..inf,c=0..inf[binomial(r,c)]  

   the lower-triangular Pascal-matrix 

 

S2 :=  matrixr=0..inf,c=0..inf[s2r,c]  

  // s2 Stirling-numbers 2nd kind 

 

S1 :=  matrixr=0..inf,c=0..inf[s1r,c]   

   // s1 Stirling-numbers 1st kind 

 

 

fS2F := f * S2 * F  // in other texts denoted as "U" for "U-tetration" 

fS1F := f * S1 * F 

  // similarity-scalings for operation with vandermonde vectors 

S1 = S2-1   // see, for instance [A&S] 

W .= f  * VZ = fS2F * P~ // in other texts denotet as "B" for "T-tetration" 
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3.2. Addendum concerning diagonalization of P 

Though I didn't formulate the complete proof, it may be worth to notice here, that 

a diagonalization of P by a left-eigenmatrix (or of P~ by a right one) for the case of 

infinite dimension can be defended.  

We can exploit the fact, that the matrix W can be factored into two triangular ma-

trix-factors, which are separately invertible; in my notation: 

(3.2.1.)     W  =   fS2F * P~   

(3.2.2.)  = (F-1 * S2 * F)  * P ~ 

 

The factors are invertible, and for S2 we use S1 as inverse6: 

(3.2.3.) fS2F*fS1F  = fS1F*fS2F 

   = F-1 S1 F F-1 S2 F 

   = F-1 S1 S2 F 

   = F-1   I     F 

   =       I  

(3.2.4.) => fS2F -1  = fS1F  

and for the possibility of inversion of P we don't need a long derivation.  

 

Then the initial setup 

 P~ *         W      =         W        * E  

can be expanded and rewritten to 

(3.2.5.) P~ * fS2F * P~   =   fS2F * P~ * E  // expand W 

(3.2.6.) F * P~ * fS2F * P~  =   S2*F* P~ * E  // premultiply by F 

         H            * P~  = … 

Here we look first at the product H = F * P~ fS2F and find that the entries of this 

product are all derivatives of the function exp(x)-1 and of all its powers evaluated 

at x=1. Thus, although P~ is not rowfinite and fS2F not columnfinite we have ana-

lytically usable (known) entries in the result H of the matrix-product. 

Next, the left-multiplication with S1 is possible without a convergence-problem 

because S1 is rowfinite, so we can write: 

(3.2.7.) S1 * H * P~  =         F* P~ * E   // 2.2.6 premultiplied by S1 

But moreover, the crucial point is, that also the product 

 S1 * H   

is (upper) triangular and thus column-finite (heuristic, not yet proven). This al-

lows to proceed with the reciprocals of the remaining second and the third factors 

on the rhs : the premultiplication by F-1 (which is diagonal and can always be 

used) and finally P-1~ is thus possible, gives again exact values and provides the 

sought diagonalization of P. In short we did: 

(3.2.8.) P-1~ F-1 S1 * H * P~   =         E 

 P-1~ fS1F * P~ * fS2F P~  =         E 

(3.2.9.) P-1~ (fS1F * P~ * W)   =         E 

We cannot write W-1 for (P-1~ * fS1F) as first factor in the above (because of an 

occuring infinite sum (zeta(1))), but must indicate the order of computation by 

                                                 

6 concerning the reciprocal relation between Stirlingnumbers 2nd and 1st kind see for instance [A&S] 
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parentheses; and must stay with that we cannot use associativity to change order 

of computation. 
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3.3. Combinatorical interpretations in tetrates of P  

Interestingly, the tetrates of P are related to some combinatorical properties. We 

find the entries of the first column of P^^h for h=2..5 in the OEIS 

P^^2 A000248 1, 1, 3, 10, 41, 196, … 

Number of forests with n nodes and height at most 1. 

P^^3  A000949 1, 3, 16, 101, 756, 6607, 65794, 733833, 9046648, …  

Number of forests with n nodes and height at most 2. 

P^^4 A000950 1, 3, 16, 125, 1176, 12847, 160504, … 

Number of forests with n nodes and height at most 3. 

P^^5 A000951 1, 3, 16, 125, 1296, 16087, 229384, 3687609, …  

Number of forests with n nodes and height at most 4. 

 (…) (… increasing number of leading entries become constant…) 

P^^inf A000272 1, 1, 1, 3, 16, 125, 1296, 16807, 262144, 

Number of trees on n labeled nodes: n^(n-2). 

 

See: "Online encyclopedia of Integer sequences, N.J.A. Sloane" 

 http://www.research.att.com/~njas/sequences/A000248   

 http://www.research.att.com/~njas/sequences/A000949   

 http://www.research.att.com/~njas/sequences/A000950   

 http://www.research.att.com/~njas/sequences/A000951   

 http://www.research.att.com/~njas/sequences/A000272 

3.4. Entry in OEIS for Exp(PP – I) : 

A124824  LambertW analog of the Bell numbers:  

  a(n) = (1/e)*Sum_{k>=0} k*(n+k)^(n-1)/k! for n>0 with a(0)=1.  

 

 1, 1, 4, 26, 235, 2727, 38699, 649931, 12616132, 278054700, 6861571205, 187474460527,  

 

 E.g.f.: A(x) = exp(L(x) - 1), where L(x) = -LambertW(-x)/x. - Vladeta Jovovic, Nov 10 2006 

 E.g.f.: A(x) = exp( Sum_{n>=1} (n+1)^(n-1)*x^n/n! ). 

 a(n) = Sum_{k=0..n} C(n-1,k-1)*n^(n-k)*Bell(k). 

 

More generally: e.g.f. B(x,m) = exp(L(x)^m - 1) generates the sequence:  

 a(n) = Sum_{k=0..n}m^k* C(n-1,k-1)*n^(n-k)*Bell(k)  

and also  

 a(n) = (1/e)*Sum_{k>=0} m*k*(n+m*k)^(n-1)/k! for n>0 with a(0)=1.  

  - Vladeta Jovovic and Paul Hanna, Nov 10 2006 

EXAMPLE   

 A(x) = 1 + x + 4*x^2/2! + 26*x^3/3! + 235*x^4/4! + 2727*x^5/5! +... 

 E.g.f.: log(A(x)) = L(x) - 1, where L(x) = -LambertW(-x)/x, or, 

 L(x) = 1 + x + 3*x^2/2! + 16*x^3/3! +...+ (n+1)^(n-1)*x^n/n! +... 

 

Since L(x)^k = Sum_{n>=0} k*(n+k)^(n-1)*x^n/n!, for all k, then the series representation of the g.f. is derived from: 

 A(x) = (1/e)*Sum_{k>=0} Sum_{n>=0} k*(n+k)^(n-1)/k!*x^n/n! 

  so that a(n) = (1/e)*Sum_{k>=0} k*(n+k)^(n-1)/k! with a(0)=1. 

PROGRAM  a(n)=n!*polcoeff(exp(sum(m=0, n, (m+1)^(m-1)*x^m/m!)-1), n) 

(PARI)   {a(n)=if(n==0, 1, round(exp(-1)*sum(k=0, 3*n, k*(k+n)^(n-1)/k!)))} 

(PARI)   {a(n)=if(n==0, 1, sum(k=0, n, binomial(n-1, k-1)*n^(n-k)*k!* polcoeff(exp(exp(x+x*O(x^k))-1), k)))} 

 

AUTHOR  Paul D. Hanna (pauldhanna(AT)juno.com), Nov 09 2006 
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