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Abstract: In this article I describe the problem of the observed discrepancy, when the infi-

nite alternating series of powertowers of increasing heights ("Tetra-series") are computed 

according to the matrix-method (using diagonalization for fractional iteration) compared 

to the evaluation of the partial sums of the powertowers using a summation-method, like 

for instance, Pari/GP-sumalt-function. 

The discrepancy cannot be explained yet, and a set of approaches to understand the source 

of the discrepancy is presented. At least, there are some properties of these discrepancies 

found, which may direct into a direction for further research. 
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1. Intro 

Assume the following two (and mutual inverse) tetrational-functions: 

(1.1.1.) ub(x)  = b
x
  – 1     lb(x)  = log(1+x)/log(b) 

and their iterations as "tower"-functions with "height"-parameter h which I call "U-tetration" here: 
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Originally I considered the more common "T-tetration" (I adapt the notation here) 

(1.1.3.) tb(x)  = b
x
        tlb(x)  = log(x)/log(b) 

 ttb(x,h)  = ttb(tb(x),h-1)={b,x}^^h   tltb(x,h)  = tltb(tlb(x),h-1) 

but after I could show, that ttb() and utb() are convertible by shift and rescale of x I discuss the U-

tetration here, since its matrix-operator is triangular and thus better accessible (for b=e=exp(1) we 

can even use rational arithmetic). 

 

In this article I compare two methods to compute the two infinite alternating sums 

(1.1.4.) AUb(x) = x – (b
x
-1) + (b

b
x
-1

-1) - ...  = ∑
=

−
inf

0h

b

h
)h,x(ut*)1(  

(1.1.5.) ALb(x) = x – lb(x) + lb(lb(x)) - ...  = ∑
=

−
inf

0h

b

h
)h,x(lt*)1(  

which show a surprising and striking discrepancy for ALb(x), for which I don't have an explanation so 

far. I'll compare the "serial-computation" by Euler-summation using partial sums of the series of towers, 

and the "matrix-computation" for the summation via my matrix-method. 

 

The following text is an approach to shed some light on the characteristic of this inconsistency, trying to 

find a way to explain, and possibly cure it. The inconsistency is "small", and also shows some systema-

tic, so that there is a bit of hope to find some description of its properties and for its reason.  

 

For descriptions of the involved matrix-operations see appendices 3.1 to 3.3. Note, that all matrices are 

assumed to have infinite size, and for practical purposes I use truncations of size =96 x 96.  
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2. The problem 

2.1. The conjecture and the inconsistency 

Recently I conjectured, based on consideration of the matrix-method for these computations, that 

(2.1.1.) AUb(x) + ALb(x) – x = 0  

for all b and x and computed example-values using the matrix-method.  

However, one correspondent in a usenet-discussion-group pointed out, that my computations
1
  did not 

agree with his serial computations, which were based on evaluation the partial sums and application of 

Cesaro-summation. Then I confirmed this finding with own computations, where I used Euler-

summation based on the partial sums. I call the latter here the "serial"-method. 

So the "serial method" is to compute the individual u- or l-towers and their (alternating) sum using Eu-

ler-summation, the "matrix-method" is to compute that sums using matrices of coefficients of the invol-

ved powerseries Mu and Ml . Note, that there is no obvious discrepancy of the two methods for compu-

tation of AU; only for AL, and this discrepancy is small – and comes out to be systematic, thus correcta-

ble. 

Matrix-method 

Here the matrix Mu represents the infinite alternating sum of powers of Stirling-matrices 2'nd kind, 

rowscaled by the logarithm of b, S2b , and the matrix Ml represents the infinite alternating sum of po-

wers of Stirling-matrices 1'st kind, columnscaled by the reciprocal of the logarithm of b, S1b . 

(2.1.2.) S2b = 
d
V(log(b))*S2    S1b = S1 * 

d
V(1/log(b))  

which provide the coefficients for the powerseries in x for b
x
-1 and logb(1+x) respectively, and also are 

their mutual reciprocals (S1b * S2b = I ). Using their powers one can compute the according iterated 

function utb(x,h) and ltb(x,h) correctly: since the matrices S1, S1b , S2, S2b are triangular, the matrix-

entries of their powers can be computed by finite sums (which occur in the required vector-products) 

and provide exact terms
2
 for any finite integer power.  

Then by linear combination of that matrix-powers I assume (and define): 

(2.1.3.) Mu  = (I – S2b + S2b
2
 – S2b

3
 + ... - ...)  

(2.1.4.) Ml  = (I – S1b + S1b
2
 – S1b

3
 + ... - ...)  

and Mu and Ml can be computed in two ways, which give the same result 

* using Euler-summation of partial sums for each matrix-entry separately (The progressions in the se-

quence of related entries is asymptotically geometric). 

* I can also show, that these computations via infinite sums (evaluated for each matrix-entry separately) 

and the shortcut-formula for geometric series 

(2.1.5.) Mu = (I + S2b)
-1

  

(2.1.6.) Ml = (I + S1b)
-1

  

agree to get the same final M-matrices. (see Appendix 3.2 and 3.3) 

 

 

 

                                                 
1 which actually used the T- instead of U-tetration, but that doesn't matter here 

2 as far as logarithms and their powers are assumed to be "exact". To prevent any possibility of error, we may use b= exp(1), 

thus the log(b)=1 and we have exact rational entries in all involved matrices 
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So let us assume here, that the matrix-method for computation of ub(x) and lb(x) resp utb(x,h) and ltb(x,h) 

are correct for a single tower of arbitrary height h. (I verified this also in some examples). 

This is not so with the infinite alternating sums.  

More precisely, it seems, that the results are consistent (with reasonable approximation in spite of the 

finite truncation of series) for the alternating sum AUb(x), but not for its "inverse", ALb(x).  

From matrix-algebra, Mu + Ml = I , and thus the expected sum of the two series is 

(2.1.7.) AUb(x) + ALb(x) – x = 0  (matrix-computation) 

This result appears indeed, as expected, if evaluated using the matrix-method only. 

Also apparently 

(2.1.8.) AUb(x) (serial-computation) = AUb(x)   (matrix-computation) 

seem to occur with arbitrarily well approximation.  

So the said inconsistency seems to be based in some special property of the AL()-sum only, since: 

(2.1.9.) ALb(x) (by serial-computation) ≠ ALb(x)   (by matrix-computation) 

and hence the discrepancy: 

(2.1.10.) AUb(x) + ALb(x)  – x ≠  0    (serial-computation) 

 

 

 

The hypothese and the problem may be expressed in a more concise way (neglecting here, that this 

notation would change the order of summation): 

Definition: 

(2.1.11.) ALb(x) + AUb(x) – x  = ... - ... +  ltb(x, 2) -  ltb(x, 1) +    x  

           
 
 +    x          - utb(x,1) + utb(x,2) - ...+ ... 

             -     x 

    = ... - .. + utb(x,-2) -  utb(x,-1) +  utb(x,0)  - utb(x,1) + utb(x,2) - ...+ ... 

(2.1.12.) ALb(x) + AUb(x) – x  = ∑
−=

inf

infh

b )h,x(ut  = db(x) 

Hypothese, which fits the computations by the matrix-method: 

 

(2.1.13.)  db(x) = 0 

 

Observation by serial summation 

 

(2.1.14.)  db(x) ≠ 0 

 

where also the discrepancy occurs only due to the infinite alternating sum ALb(x) (serial-computation). 
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2.2. Some results 

First I found, that the inconsictency/deviation depends on x, different for each base b.  

Second, the deviation seem to be small and also periodical with some sinusoidal effect.  

Observation 1 

An example, using b=e
1/e

, and some x between 0<x<2 . The curves for serial and for matrix-

computation seem to match within the graphical resolution of the plot, but there is a curve of small dif-

ferences, which is somehow sinusoidal, having increasing wavelength. The scale for the difference-

curve is at the right side of the plot: 

 

 

 

From another plot one may assume, that the apparently diminuished value of the first (plotted) local 

maximum at x~0.05 is due to missing density of x-steps in that region – there seem to be a true local 

maximum of expected value neighboured to this point, instead. 

The observation, that the differences are not arbitrary, gives some hope, that the matrix-method is not 

completely useless for this series, but needs only a certain correction, which captures this sinusoidal 

effect.  

 

 

 



 An inconsistency of the Tetra-series between serial and matrix-computation S. -6- 

Tetration  Mathematical Miniatures 

Observation 2 

Next idea was then, to check, whether the deviances occur periodically when x was replaced by lb(x), 

lb(lb(x)) and so on for ltb(x,h) with increasing h. (Since for the serial version I can only sum using inte-

ger iterates h of an initial value, the problem is restricted to that cases) 

Here I got the first interesting result: taking one x0, for the first few xh = ltb(x0,h) the same deviances 

occur peridodically with alternating signs. That means, that for the partial series 

 ALb(x)   = ltb(x,0) - ltb(x,1) + ltb(x,2) - ltb(x,3) + ... - ... 

 ALb(ltb(x,1) )  =               ltb(x,1) - ltb(x,2) + ltb(x,3) + ... - ... 

 ALb(ltb(x,2) )  =                              ltb(x,2) - ltb(x,3) + ... - ... 

the differences  

 ALb(ltb(x,h) ) (serial computation) - ALb(ltb(x,h) ) (matrix-computation) = diffb(x) 

were the same for each h (except for their sign). 

In the following table I document this (including the same for AUb(xh) , which seem to agree with both 

methods for the checked h and the used x. 

To have converging series in both ways I used the base b=1.3 here. 

Table 2.2.1 

b=1.3 using matrix Ml; 

serial: ALb(ltb(x,h)) 

using matrix Mu; 

serial: AUb(ltb(x,h)) 

x=0.1x=0.1x=0.1x=0.1    MatrixMatrixMatrixMatrix    SerialSerialSerialSerial    diffdiffdiffdiff    MatrixMatrixMatrixMatrix    SerialSerialSerialSerial    diffdiffdiffdiff    
h=0 0.0210405 0.0261459 -0.00510539 0.0789595 0.0789595 1.57901E-188 

h=1 0.0789595 0.0738541 0.00510539 0.284315 0.284315 9.88668E-135 

h=2 0.284315 0.289420 -0.00510539 0.896827 0.896827 1.58715E-85 

h=3 0.896827 0.891721 0.00510539 2.07556 2.07556 6.35219E-47 

h=4 2.07556 2.08067 -0.00510539 3.18189 3.18189 6.57891E-23 

h=5 3.18189 3.17678 0.00510539 3.80753 3.80753 1.07150E-10 

h=6 3.80752 3.81263 -0.00511031 4.11321 4.11321 0.00000491495 

h=7 4.11318 4.10810 0.00507446 4.22781 4.22778 0.0000310898 

x=0.2x=0.2x=0.2x=0.2                            

h=0 0.0426027 0.0304611 0.0121416 0.157397 0.157397 1.26643E-159 

h=1 0.157397 0.169539 -0.0121416 0.537520 0.537520 1.13926E-107 

h=2 0.537520 0.525379 0.0121416 1.47355 1.47355 2.76915E-63 

h=3 1.47355 1.48570 -0.0121416 2.72785 2.72785 2.20361E-32 

h=4 2.72785 2.71570 0.0121416 3.55703 3.55703 2.69669E-15 

h=5 3.55703 3.56918 -0.0121419 4.01184 4.01184 0.000000360360 

h=6 4.01142 3.99969 0.0117312 4.17618 4.17577 0.000410345 

h=7 4.17670 4.18791 -0.0112110 4.27664 4.27757 -0.000930386 

The red marked entries are not reliable due to difficult conditions for Euler-summation in that cases. 

The other differences in the Mu-column seem to be numerical errors due to the finite truncation of the 

matrices and the increasing heights, which need high orders of Euler-summation. See Appendix 3.3 

 

In the following table I compare the theoretical identity, based on matrix-algebra-properties. The sum of 

the two alternating series ALb(x) + AUb(x) should add up to x or more general  

Recall the hypothese from matrix-identities: 

 

(2.2.1.) ALb(ltb(x,h)) + AUb(ltb(x,h))  –  ltb(x,h)   =   db(x)  

    db(x) = 0    by hypothesis 
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The matrix-computation fits well for several heights, and for the serial computation the deviance is 

nicely constant over all heights aside of the changing sign: 

xxxx0000=0.1=0.1=0.1=0.1    using Musing Musing Musing Mllll + M + M + M + Muuuu        
AL + AU AL + AU AL + AU AL + AU –––– lt lt lt ltbbbb(x(x(x(x0000,h),h),h),h)    

serialserialserialserial    
AL + AU AL + AU AL + AU AL + AU ----ltltltltbbbb(x0,h)(x0,h)(x0,h)(x0,h)    

h=0 -7.01691E-203 0.00510539 

h=1 -1.02064E-202 -0.00510539 

h=2 -2.04128E-202 0.00510539 

h=3 6.72398E-199 -0.00510539 

h=4 -1.49034E-174 0.00510539 

h=5 -8.80295E-163 -0.00510539 

h=6 -0.000000119785 0.00510539 

h=7 0.00000352142 -0.00510539 

 

However, this result is not really surprising, since from the construction of the formula 

 ALb(x) + AUb(x) – x = ... - ... +  ltb(x,2) -  ltb(x,1) +  ltb(x,0)  

             
 
 + utb(x,0) - utb(x,1) + utb(x,2) - ...+ ... 

               -  x 

       = ∑
−=

inf

infh

b )h,x(ut  = db(x)  

the replacement of x by utb(x,h) (or ltb(x,h)) means simply to move the center-point h some indexes to 

the left or to the right, and the result should always be the same. 
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Observation 3 

The sinusoidal form of the db(x) – curve suggests to check, whether the increasing wavelength could be 

controlled by substituting some function of x for x instead. This is indeed the case. 

If I define the fractional iterates of ltb(1,h) , for instance hk=0/16, 1/16,...,32/16 and use  

 xk = ltb(1,hk ) 

 ALb(xk) + AUb(xk) – xk = db(xk)  

then I get a perfect sinus-curve for db(xk) if for the x-axis k is used instead of xk..: 

Here I used b=sqrt(2) to have good convergence for both series AL and AU: (in the plot, which were 

made in connection with another article, I used notation „ASU“ for „AU“ and „ASL“ for „AL“) 

 

 

 

 

This result is encouraging. Another plot, where I also inserted different bases b, 2 ≤ b
2
 ≤ 3, shows the 

same sinus-form for all that bases.  

Note, that the same index k leads to different fractional iterates for each base, which define then the xk-

values for the individual bases. 

Also note, that the amplitude-height of the curves was normalized by dividing by their empirical maxi-

mum so that the maximum of each curve is 1. 

The plot suggests, that each base provides a certain shift of the phase; a base in the near of b=1.43 has 

zero-phase-shift (red curve). 
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Here is a plot of the diminuishing amplitude, when b-> 2  

 

 

At b=2 we have zero-amplitude, since for all xk, which are the fractional iterates of lt2(1, h/32), the re-

sult is the same for all such hk. 
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Here is a plot for the phase-shift of a slightly extended set of different bases b: 

 

We see, that the zero-phase-shift is near the base b=1.43; but no more accurate computation was done 

yet. 

 

 

 

Conclusion based on the above observations: 

 

The values of db(x), which deviate from the expectation of equalling zero seem to match a modified 

sine-function of an index k, when the x-values are taken from consecutive fractional iterates of a star-

ting value x0 (here starting-value x0=1 was assumed) 

Having the phase-shift and the scaling of the amplitude, we could thus express the db(x)-function by a 

sine-function and thus capture the deviance of db(x) as a function of b and x. 

This would then allow to correctly compute the values of the tetra-series; however it does not explain 

the reason, why the matrix-formula using the M-matrices is not correct. 
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2.3. Quality of approximation of the powerseries based on Ml in the x = xinf - case 

A systematic view into the matrices Mu and Ml might give an idea, where the reason for the discrepancy 

between matrix- and serial computation lies. Perhaps it is an approximation-problem or an effect of 

summing divergent series inplicitely with wrong results. 

The entries of the second column in Ml are the coefficients of a powerseries in x for ALb(x).  

If x equals the limit xinf = lim h->inf ltb(x0,h) (where this converges), xinf is a fixed point, and the alterna-

ting series consists only of the values of xinf with alternating signs. Thus the Cesaro- or Eulersummation 

must give the value  

(2.3.1.) ALb(xinf) =  xinf /2 

However, the terms of Ml, multiplied by the powers of xinf do not converge at early stages, and the series 

is not well Euler-summable (if at all), so a comparision between the serial- and the matrix-method can-

not be done here. Below is a plot, which shows the bad or non-convergence of the terms and the se-

quence of partial sums for matrix-dimension of N=96. 
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A symbolic description of Ml and Mu is relatively simple, since they are, using u = log(b) for a base b 

 Mu = (
d
V(u)*S2 + I)

-1
  Ml = ( S1 * 

d
V(1/u) + I)

-1
  

We need only the second column; expressed symbolically this gives for the first few rows the following 

polynomials in u: 

 

Mu Ml 

0 0 

      1     .  

1! (1+u) 

      u     .  

1! (1+u) 

            -u
2
        .  

2! (1+u)(1+u
2
) 

             u
2
        .  

2! (1+u)(1+u
2
) 

        2*u
5
-u

3
            .  

3! (1+u)(1+u
2
)(1+u

3
) 

       -2*u
5
+u

3
            .  

3! (1+u)(1+u
2
)(1+u

3
) 

       -6*u
9
+5*u

7
+6*u

6
-u

4
       .  

4! (1+u)(1+u
2
)(1+u

3
)(1+u

4
)  

       6*u
9
-5*u

7
-6*u

6
+u

4
       .  

4! (1+u)(1+u
2
)(1+u

3
)(1+u

4
)  

24*u
14

-26*u
12

-46*u
11

-36*u
10

+9*u
9
+24*u

8
+14*u

7
-u

5
  

 5!           (1+u)(1+u
2
)(1+u

3
)(1+u

4
) (1+u

5
)  

-24*u
14

+26*u
12

+46*u
11

+36*u
10

-9*u
9
-24*u

8
-14*u

7
+u

5
   

 5!           (1+u)(1+u
2
)(1+u

3
)(1+u

4
) (1+u

5
)  

 

where each row has to be multiplied with a consecutive power of x, beginning at x
0
  

Example: 

 AUb(x) = 1/(1+u) x/1!  -  u
2
 /((1+u)(1+u

2
)) x

2
/2!  +  (2 u

5
 – u

3
)/((1+u)(1+u

2
)(1+u

3
) x

3
/3!   + ...  

One can immediately see, that these coefficents cancel, if Mu and Ml are added, except the second row, 

wich gives then (1+u)/(1+u)/1! = 1. So the only coefficient, which remains, is 1 at the first power of x, 

so the matrix-computation gives 

 AUb(x) + ALb(x) = x  

also by this symbolic representation – with no obvious error. 

The polynomials in u of each row r (r=0..inf) has the highest power of u with of (-1)
r
/r*1/u, (the row 

r=0 must be omitted) so asymptotically for large base b and thus large u (=log(b) ) we should have 

  AUb(x) ~  log(1+x) / u = logb(1+x)   for large b 

(but I didn't check this further) 

 

The coefficients of u of the numerators in Mu only, as matrix show this image: 

   

where each column c is associated with the c'th power of u (c beginning at zero) 

 

Using u=1 (b=exp(1)) we get the same coefficients as in chap 2.4 below(see "rowsums" in 2.4.2)  

 AUe(x) = 1/2 x  - 1/8 x
2
  + 1/48 x

3
 + 1/96 x

4
 ...   
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2.4. A version, where ALb(x) is expressed by a series using values of the Dirichlet-eta-
function 

The observed discrepancy between the two method reminds me of a similar effect, if the zeta-/eta-

function is naively summed, again by (insufficient) consideration of matrix-identities. 

There may be another way of obtaining the row-sums of the list-matrix of second columns of the po-

wers of S1b.  

Note: to have exact arithmetic, I use b=e=exp(1) as base for the matrices in the following examples. 

(2.4.1.) Example: 

The 2'columns of powers of S1e alternate 

summed 

rows 

...  

 

If we construct polynomials based on the progressions in each row and then consider, how to compute 

the row-sums, then we can use the polynomials for each subsequent x=1,2,3,... and sum then with alter-

nating sign. 

(2.4.2.) Example 

The 2'columns of powers of S1e polynomials in x for computing entries rowsums 

...   

 

The evaluation of the first and second row is trivial. 

For the third row (where the polynomial is 1/2 – 1/2x), if we insert 1,2,3,4,... subsequently for x, we get 

for the infinite alternating sum 

(2.4.3.)    (  1/2*1   – 1/2 *1) 

 – (  1/2*1   – 1/2 *2)  

 +(  1/2*1   – 1/2 *3)  

 – (  1/2*1   – 1/2 *4)  

 .... 

 ============== 

 1/2*η(0)   – 1/2 η(-1) = 1/2*1/2 – 1/2*1/4 = 1/8 

which matches the row-sum, computed the other ways, perfectly. 

Let's see the polynomial for the fourth row, where I insert the η()-expressions at once: 

(2.4.4.)     1/6*η(0) – 5/12*η(-1) + 1/4*η(-2)  

 = 1/6*1/2   – 5/12*1/4    + 1/4*0  

 = 4/48 – 5/48 

 = - 1/48  

This again fits perfectly the otherwise computed sums. (I proceeded here to check this for a few more 

rows). The heuristic suggests, that this may be a valid procedure. 
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The next step is, to display these coefficients (as computed for the eta()-s), collected by equal powers of 

x as a matrix C itself, where the coefficients of each polynomial are expressed as entries of one row. 

The matrix C has then a special property by its construction. Postmultiplied by a powerseries, it gives 

interesting sequences of numbers: Bell-numbers, factorials, in general the e.g.f.s for the iterated expo-

nentials and logarithms (see OEIS A000258, A003713) 

(2.4.5.) Examples 

 

C * V(x) = 
d
F

-1
 * (interesting sequence) 

              

 *  

 

Obviously, this is due to its property to define the 2'nd column of the h'th power of S1e, and in the co-

lumn for V(2) = [1,2,4,8,...] we find for the result in that column just the coefficients [1,-1/2,1/3,-1/4,...] 

of the powerseries, which defines log(1+x) (if the reciprocal factorials, which I factored out here for 

display, are also used), just the second column of the first power S1e
h
, where h=1 . 

Now, if we don't look at an individual powerseries, but at the infinite alternating sum of all consecutive 

powerseries, we have the vector of eta()-values at the rhs  

(2.4.6.) Example: 

 

lim( ) = 

 

 

 

=  

and get, as expected: 

 

(2.4.7.) C * H = Ml [,1] 

 

*  

 

 

 

=  
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Using column-sums of C 

By this construction, we had now, writing  

 H = columnvector(η(0), η(-1), η(-2),...)  

the equivalent expression 

(2.4.8.) ALe(x) = V(x)~ * C * H 

(2.4.9.) ALe(1) = V(1)~ * C * H 

 

Thus, if we assume a fixed x, for instance x=1, then we might use associativity and rewrite: 

(2.4.10.) ALe(1) = (V(1)~ * C) * H = A~ * H = [a0, a1, a2, a3, ...]~ * H  

and we can compute ALe(1) by a series of η()-values: 

(2.4.11.) ALe(1) = a0 η(0) + a1 η(-1) + a2 η(-2) + a3 η(-3) + .... 

The values for the ak are not obvious. Here I only recognize 

 a0 = exp(1)-1 

having a known value, and numerically I get for the other coefficients ak about 

(2.4.12.) a0 ~   1.71828  

 a1 ~  -1.17714 

 a2 ~   0.732788 

 a3 ~  -0.430009  

 a4 ~   0.241939 

 a5 ~  -0.131792 

 a6 ~   0.0699448 

 a7 ~  -0.0363238 

Note, the sign change in connection with the fact, that each η(-2k) -value is zero, and the non-zero va-

lues alternate in sign, so we get effectively: 

(2.4.13.) ALe(1) =      1.71828...  * 1/2  

    - 1.17714...  * 1/4 

   +  0 

   + 0.430009  *  1/8 

   + 0 

    - 0.131792 * 1/4 

   + 0 

   + 0.0363238 *  17/16  

   + 0 

   ...  

For x=1, x=log(1+1), x=log(1+log(1+1)) we get the following ak:  

x=1 x=log(1+1) x=log(1+log(1+1)) 

 a0 ~   1.71828  

 a1 ~  -1.17714 

 a2 ~   0.732788 

 a3 ~  -0.430009  

 a4 ~   0.241939 

 a5 ~  -0.131792 

 a6 ~   0.0699448 

 a7 ~  -0.0363238 

      1.00000 

    -0.433046 

     0.175814 

   -0.0685215 

    0.0259260 

  -0.00958558 

   0.00347799 

  -0.00124213 

      0.693147 

     -0.216523 

     0.0644657 

    -0.0186106 

    0.00525275 

   -0.00145651 

   0.000398033 

  -0.000107444 

 

but which does not help much, since the h()-values increase in absolute value and seem to make the 

powerseries a divergent series in all cases by the dominance of their hypergeometric progression. 

 

Gottfried Helms 

(Note: I'll be updating this text as I get new results. Check this url occasionally) 
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3. Appendix: 

3.1. The matrices S1 and S2 

I use the matrix-representation beginning with: 

(3.1.1.) ub(x)  = V(x)~ * S2b [,1]  // [,1] meaning the second column of S2b only 

(3.1.2.) lb(x)  = V(x)~ * S1b [,1] 

where S1b and S2b are matrices, which contain essentially the Stirling-numbers of first and second kind.  

Let V(x) be a notation for a vector, which contains consecutive powers of its argument, such that 

(3.1.3.)  V(x) = column(1, x, x
2
 , x

3
 ,...) 

V(x)~ its transpose (row-vector) and 
d
V(x) its diagonal arrangement.  

Let b=e=exp(1), then the basic Stirling-matrices are: 

 

(3.1.4.) S1e := S1 = 

 

 

(3.1.5.) S2e := S2 =  

 

and for a general b  

(3.1.6.) S1b = S1e *  
d
V(1/log(b))  

(3.1.7.) S2b = 
d
V(log(b)) * S2e  

Then according to the "Handbook of mathematical functions" (Abramowitz-Stegun [AS-St]) we have 

the following identities for b=e=exp(1): 

(3.1.8.) V(x)~ * S2e = V(exp(x)-1)~ = V(ue(x)) ~ 

(3.1.9.) V(x)~ * S1e = V(log(1+x))~ = V(le(x)) ~  

and finite integer iterations can be expressed by powers of S1 and S2: 

(3.1.10.) V(x)~ * S2e
h
 =  V(ute(x,h))~  

(3.1.11.) V(x)~ * S1e
h
 =  V(lte(x,h))~  

 

 

 

For instance, correctly, (where x=0.6 and b=e=exp(1)) 

 

V(0.6)~ * S1e  =V( le(0.6))~ 

 

  

 

where in the second column of the result is lte(0.6,1)= le(0.6) = log(1+0.6) ~ 0.470004  
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and the iteration (by second power of S1) 

 

V(0.6)~ * S1e
2
 = V(le(le(x))) ~ 

 

  

 

where in the second column of the result is lte(0.6,2)= le(le(0.6)) = log(1+log(1+0.6)) ~ 0.385265 

 

 

3.2. Powers of S1 and the matrix Ml  

The top-left-edge of the first three powers of S1 look like  

 

   

 

Since only the second columns are interesting here for to obtain the iterated logarithm, I note the se-

quence of that columns in the following, and show also the row-wise sums, as obtained by any method 

of summation of alternating divergent series: 

 

(3.2.1.) The 2'columns of powers of S1 The alternating sums of the row-entries, 

computed by serial summation of the entries 

using Euler-summation 

...            

 

3.3. Ml by geometric-series formula 

The alternating sum of the 2'nd columns of powers of S1e is also correctly reproduced by  

(3.3.1.) Ml,e=(I+S1e)
-1

  

see the relevant result in second column: 

 

(3.3.2.) Ml,e=(I+S1e)
-1
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3.4. Approximation to AUb(x) by Mu  

Various dimensions for Mu . diff is the difference between results of matrix-computation and serial 

computation (using Pari/Gp sumalt()-function with prec 400 ) 

, 

dimension diff AUb(x)  Mu vs. serial diff ALb(x)  Ml vs. serial 

b=1.3, x=1   
32 
48 
64 
80 
96 
 

-4.90491008447 E-33 
-5.44017005559 E-47 
-2.90200439567 E-62 
-8.20471938736 E-81 
 1.77318320360 E-92 
 

-0.00990225809450 
-0.00990225809450 
-0.00990225809450 
-0.00990225809450 
-0.00990225809450 
 

b=2.1, x=0.2   
32 
48 
64 
80 
96 
 

-1.40198762190 E-25 
 5.04868595534 E-36 
-5.96667339306 E-46 
 1.22482311871 E-54 
-6.23842939347 E-64 
 

2.30682882083 E-14 
2.30682882082 E-14 
2.30682882082 E-14 
2.30682882082 E-14 
2.30682882082 E-14 
 

 

Other examples behave similarly. 

3.5. xk-values for db(x) - plots 

The xk values of fractional heights hk=-1+k/32 for base b=sqrt(2) and a=1 where 

 xk = ltb(a,hk) 

For k=32, thus h=0, this is xk = a = 1., for k=33, thus h=1/32, this is x33=1.025 and for k=64, thus 

h=32/32=1 this is x64=log(1+x0)/log(sqrt(2))=2 The other values, for k=0..31 and k=65..96 are compu-

ted by integer iteration. 

k xk k xk 

32 1   

33 1.025235216 49 1.486307197 

34 1.050907909 50 1.518446661 

35 1.077016461 51 1.550933184 

36 1.103558812 52 1.583757306 

37 1.13053245 53 1.616909148 

38 1.157934408 54 1.650378416 

39 1.185761257 55 1.684154419 

40 1.214009098 56 1.718226083 

41 1.242673563 57 1.752581962 

42 1.27174981 58 1.787210258 

43 1.301232523 59 1.822098835 

44 1.331115909 60 1.85723524 

45 1.361393704 61 1.892606721 

46 1.392059168 62 1.928200243 

47 1.423105095 63 1.964002514 

48 1.454523815 64 2 

 

This computation of xk was actually performed by (Pari/Gp-Pseudocode): 

 L = S1 * dV(1/b)  

 L32 = mpow(L,1/32) \\ using eigenvalue-decomposition 

 a = 1 

 for(k=0,96, xlist[1+k]= V(a)~ * (L32^(k/32-1))[,2] ) 
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