
1. Fixpoint by construction (for "Tetration-Forum") 

1.1. Intro 

Denote tetration by the following recursive function: 
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Note, that I begin to use the notation 
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    instead of the common 
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because  

* this seems more consistent with my matrix-approach to tetration and   

* allows to define a starting value as top-exponent even for infinite towers (which seems also more 

  consistent with the idea of an initial value for iterations (including infinite repetitions).  

* this seems also to be more consistent with the notion of several fixpoints  

* and with the problem of consistency of partial evaluation of an expression which is meant as  

  being infinitely iterated. 

Fixpoints 

Since I don't have the Productlog-function ready in Pari/Gp, I used a handwaved recursive tracer to 

approximate complex "fixpoints" t for real bases s (and currently have to relate to this), such that 

(1.1.2.)   s
t
 = t   or      s = t

1/t
  

and  

(1.1.3.)  
...sss

t  =t  

Here I want to have a deeper look into this problem. My approach is here, to assume an arbitrary com-

plex t and see, whether we can construct all real s>0 from this assumtion. In fact, I actually assume a 

parameter u, where u=log(t) first, compute the unique t from this and then s. I omit the periodicity for u 

for a start. 

But the first problem is, can (1.1.2) actually be translated into (1.1.3), if t is complex? 

 

1.2. Question: is 
...xxx = y  one-to-one translatable into yx=x ? 

compare: Galidakis: http://ioannis.virtualcomposer2000.com/math/exponents.html ( a bit edited): 

x  

 

if x is in [1/e,e] 

 (2)      [x(1/x)][x
(1/x)][x

(1/x)]

=  { y,  
where y is in [1/e, e]  

and y satisfies: y(1/y)=x(1/x)  

if x is in (e,+oo) 

 

In a more graphical shape: 
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In my understanding this first states the ambiguity of representations for a. In the following the Lam-

bertW-function is discussed to establish the identity of (1.1.2) and (1.1.3). And then, working further 

through Ionannis' article, I got to the following consideration on my sketchpad. 



 A view into fixpoints S. -2- 

 Identities with binomials,Bernoulli- and other numbertheoretical numbers Mathematical Miniatures 

1.3. Derivation 

Assume the formal relation (in this example I use only the principal branch of logarithm) 

(1.3.1.) s = t
1/t

   and  u=log(t)  

Assume the u as a free parameter and t and s depending on u. Denote the components of t and u  

(1.3.2.) u = α + β i and   t = exp(u) = a + b i  

then first  

 s  = t
1/t

  

  = exp((α + βi )/(a + bi)) 

  =exp((α + βi ) (a - bi)/|t|²) 

(1.3.3.)  =exp(aα + bβ )* exp( (aβ - bα)i)
1/|t|²

 

Then to have s real, given the parameters u and t it is necessary that  

(1.3.4.) either   ß = 0  ==> b = 0   (the "real-only-case") 

(1.3.5.) or  ß =/=0   but (aβ - bα) = 0  (the "complex-to-real" case) 

By definition, a and b are functions of α and β, so we need only choose some α and β.  

(1.3.6.) t = a + bi = exp(α + βi) = exp(α ) * (cos(β)+i sin(β)) 

(1.3.7.) a =  exp(α ) * cos(β)   b =  exp(α ) * sin(β) 

Then, to have s purely real it is required by (1.3.3), that 

(1.3.8.) (aβ - bα) = 0 ==>  

(1.3.9.) exp(α ) * cos(β)β  −  exp(α ) * sin(β)α  = 0 

and since ß is an argument of cos() and sin(), it seems best to choose ß as free parameter and α as the 

dependent:  

(1.3.10.) α  = β cos(β) / sin(β)  

so 

(1.3.11.) u  = β cos(β) / sin(β)  + ß i   

     = ß /sin(ß) * (cos(ß) + sin(ß) i) 

and a certain selection for ß defines then the whole formula for s.  

We have then 
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with singularities where ß is a integer multiple of π, with the one exception: the singularity at ß=0*π  is 

removed and α can assume any value in this case. If ß=0 then α is a free real parameter , u and t are 

then real, too, and we get the known form: 
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1.4. The "real-only" case (real u,t,(ß=0, b=0); real s) 

If β=0 (then also b=0), then we may freely choose α having u=α and then t = exp(u) =exp(α) we have 

due to Euler, the special ranges for 

(1.4.1.)   s given by 1/e
e
 <s<e

1/e
   

(1.4.2.)   1/e < a=t <e   

(1.4.3.)   -1 < α=u < 1  

Where α=1 marks also the upper limit for s in the above formula (1.3.15)  (when setting ß=0): 
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for ß=0, u=α then t=a and s evaluates to (limit) 
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1.5. The "complex to real" case ß<>0 (complex u,t, real s) 

Here we need not separate special ranges for α and/or a; so I display the relations between the parame-

ters in a graph. The x-axis shows the sole independent parameter ß; the imaginary part of u. From here 

the parameter α (the real part of u) must satisfy a functional condition dependent on ß; in the graph this 

is the blue line. The symmetry wrt the y-axis shows, that the conjugate solution of u applies with the 

same parameter α. and gives the same result for s. 

Functional (and uniquely dependent) on the initial choice of ß are then also the real and imaginary parts 

of t = exp(u). The real and imaginary parts are displayed in magenta color.  

And depending on t also s = t
1/t

 is functionally defined. It is displayed in green color, and rescaled here 

as log(log(s)); this scale is indicated at the right border of the graph. The minimum of the symmetric 

curve for log(log(s)) is  

 log(log(s))=-1, log(s) = 1/e , s = e
1/e

 . 

this means, this function in ß covers all s > e
1/e

  - just the region above the range of the "real-only" case. 

 

In the following graph the red-marked points have coordinates  

  u = α + β i  = 0 + π/2 i , 

  t = a + b i    = 0 + i   

  s =  = e
π/2

  

Obviously for the two range-definitions dependend on ß (where, if ß=0, α can freely be selected), we 

get the full set of real values s>0 for s.  

 ß = 0,   -inf <α < +inf   0 < s < e
1/e

  

 0 < ß < π,     0 <α <3   e
1/e

 <=s < +inf  

 

Gottfried 

 



 A view into fixpoints S. -5- 

 Identities with binomials,Bernoulli- and other numbertheoretical numbers Mathematical Miniatures 

A reference: 

See also a related description for ranges of the multivalued Lambert-W-function by Corless et al. where 

η appears as the parameter ß in my formula and η cot η = ß /sin(ß)*cos(ß)  

http://www.cs.uwaterloo.ca/research/tr/1993/03/W.pdf 

 

 

 

Construction of complex fixpoints for high real s>e^(1/e)
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alpha=real(u) b=imag(t)
a=real(t) s=real(s) s=e^e^6.33+ 0*i

= 3.75E245

s=e^e^-1+ 0*i

=e^(1/e)=1.44...

β =π/ 2   α=0β =π/ 2   α=0β =π/ 2   α=0β =π/ 2   α=0

s=e^e^0.45... + 0*i

=4.810477...

t=0+1*i


