1.1. Intro

Denote tetration by the following recursive function:

(1.1.1.)
$$T_s^{(0)}(x) = x \quad T_s^{(1)}(x) = s^x \quad T_s^{(m)}(x) = s^{T_s^{(m-1)}(x)}$$

Note, that I begin to use the notation

 $T_x^{(oo)}(1) = \underset{\dots,x}{\dots,x} x$ instead of the common $T_x^{(oo)}(1) = x^{x^{x^{-1}}}$

because

- * this seems more consistent with my matrix-approach to tetration and
- * allows to define a starting value as top-exponent even for infinite towers (which seems also more consistent with the idea of an initial value for iterations (including infinite repetitions).
- * this seems also to be more consistent with the notion of several fixpoints
- * and with the problem of consistency of partial evaluation of an expression which is meant as being infinitely iterated.

Fixpoints

Since I don't have the Productlog-function ready in Pari/Gp, I used a handwaved recursive tracer to approximate complex "fixpoints" t for real bases s (and currently have to relate to this), such that

(1.1.2.) $s^{t} = t \text{ or } s = t^{1/t}$ and (1.1.3.) $\dots s^{s}s^{t} = t$

Here I want to have a deeper look into this problem. My approach is here, to assume an arbitrary complex t and see, whether we can construct all real s>0 from this assumtion. In fact, I actually assume a parameter u, where u=log(t) first, compute the unique t from this and then s. I omit the periodicity for u for a start.

But the first problem is, can (1.1.2) actually be translated into (1.1.3), if t is complex?

1.2. Question: is $x^{x} = y$ one-to-one translatable into $y^{x} = x$?

compare: Galidakis: <u>http://ioannis.virtualcomposer2000.com/math/exponents.html</u> (a bit edited):

In a more graphical shape:

$$a = x^{\frac{1}{x}} \Longrightarrow_{aa} a = \begin{cases} x & if -1 \le \log(x) \le 1 \\ y & if \ 1 < \log(x) \end{cases} \quad where -1 < \log(y) < 1 \\ and \ y^{\frac{1}{y}} = x^{\frac{1}{x}} = a \end{cases}$$

In my understanding this first states the ambiguity of representations for a. In the following the LambertW-function is discussed to establish the identity of (1.1.2) and (1.1.3). And then, working further through Ionannis' article, I got to the following consideration on my sketchpad.

1.3. Derivation

Assume the formal relation (in this example I use only the principal branch of logarithm)

(1.3.1.) $s = t^{1/t}$ and u = log(t)

Assume the u as a free parameter and t and s depending on u. Denote the components of t and u

(1.3.2)
$$u = \alpha + \beta i$$
 and $t = exp(u) = a + b i$
then first
 $s = t^{1/t}$
 $= exp((\alpha + \beta i)/(a + b i))$
 $= exp((\alpha + \beta i) (a - b i)/(t)^2)$
(1.3.3) $= exp(a\alpha + b\beta) * exp((a\beta - b\alpha)i)^{1/t}$

Then to have s real, given the parameters u and t it is necessary that

(1.3.4.) either
$$\beta = 0 = > b = 0$$
 (the "real-only-case")
(1.3.5.) or $\beta = /=0$ but $(a\beta - b\alpha) = 0$ (the "complex-to-real" case)

By definition, a and b are functions of α and β , so we need only choose some α and β .

(1.3.6.) $t = a + bi = exp(\alpha + \beta i) = exp(\alpha) * (cos(\beta) + i sin(\beta))$ (1.3.7.) $a = exp(\alpha) * cos(\beta)$ $b = exp(\alpha) * sin(\beta)$

Then, to have s purely real it is required by (1.3.3), that

(1.3.8.)
$$(\alpha\beta - b\alpha) = 0 = =>$$

(1.3.9.) $exp(\alpha) * cos(\beta)\beta - exp(\alpha) * sin(\beta)\alpha = 0$

and since β is an argument of cos() and sin(), it seems best to choose β as free parameter and α as the dependent:

(1.3.10.)
$$\alpha = \beta \cos(\beta) / \sin(\beta)$$

so
(1.3.11.) $u = \beta \cos(\beta) / \sin(\beta) + \beta i$
 $= \beta / \sin(\beta) * (\cos(\beta) + \sin(\beta) i)$

and a certain selection for β defines then the whole formula for s.

We have then

$$(1.3.12) \quad u = \frac{\beta}{\sin(\beta)} * \exp(\beta i) = \frac{\beta}{\sin(\beta)} * (\cos(\beta) + \sin(\beta)i)$$

$$t = \exp(u)$$

$$(1.3.13) = \exp\left(\beta \frac{\cos(\beta)}{\sin(\beta)}\right) * \exp(\beta i) = \exp\left(\beta \frac{\cos(\beta)}{\sin(\beta)}\right) * (\cos(\beta) + \sin(\beta)i)$$

$$(1.3.14) \quad s = t^{\frac{1}{\tau}} = \exp(\frac{u}{\tau}) = \exp\left(\frac{u}{\tau}\right)$$

with singularities where β is a integer multiple of π , with the one exception: the singularity at $\beta = 0^* \pi$ is removed and α can assume any value in this case. If $\beta = 0$ then α is a free real parameter, u and t are then real, too, and we get the known form:

(1.3.15.)
$$s = t^{\frac{1}{r}} = exp(\frac{u}{t})$$
 $= exp\left(\frac{\alpha}{exp(\alpha)}\right) = exp\left(\frac{\alpha}{a}\right) = a^{\frac{1}{a}}$

1.4. The "real-only" case (real u,t,(B=0, b=0); real s)

If $\beta = 0$ (then also b = 0), then we may freely choose α having $u = \alpha$ and then $t = exp(u) = exp(\alpha)$ we have due to Euler, the special ranges for

(1.4.1.) s given by
$$1/e^{e} < s < e^{1/e}$$

(1.4.2.) $1/e < a = t < e$
(1.4.3.) $-1 < \alpha = u < 1$

Where $\alpha = 1$ marks also the upper limit for *s* in the above formula (1.3.15) (when setting $\beta = 0$):

(1.4.4.)
$$s = t^{\frac{1}{t}} = exp(\frac{u}{t}) = exp\left(\frac{1}{exp(1)}\right) = e^{\frac{1}{e}}$$

for $\beta = 0$, $u = \alpha$	<i>then t=a</i>	and s evaluates to (limit)
α>-00	a> 0	$s = e^{\frac{\alpha}{e^{\alpha}}} = e^{\frac{-\infty}{0}} \to e^{-\infty} = 0$
$\alpha = -1$	a = 1/e	$s = e^{\frac{-1}{e^{-1}}} = e^{-e}$
$\alpha = 0$	<i>a</i> = 1	$s = e^{\frac{\theta}{l}} = 1$
$\alpha = +1$	a = e	$s = e^{\frac{1}{e^{1}}} = e^{\frac{1}{e}} (maximum)$
α> +00	<i>a> 00</i>	$s = e^{\frac{\alpha}{e^{\alpha}}} = e^{\frac{1}{e^{\alpha - \log(\alpha)}}} = e^{\frac{1}{e^{\alpha}}} \to e^{0} = 1$

1.5. The "complex to real" case B<>0 (complex u,t, real s)

Here we need not separate special ranges for α and/or *a*; so I display the relations between the parameters in a graph. The *x*-axis shows the sole independent parameter β ; the imaginary part of *u*. From here the parameter α (the real part of *u*) must satisfy a functional condition dependent on β ; in the graph this is the blue line. The symmetry wrt the *y*-axis shows, that the conjugate solution of *u* applies with the same parameter α and gives the same result for *s*.

Functional (and uniquely dependent) on the initial choice of β are then also the real and imaginary parts of t = exp(u). The real and imaginary parts are displayed in magenta color.

And depending on t also $s = t^{l/t}$ is functionally defined. It is displayed in green color, and rescaled here as log(log(s)); this scale is indicated at the right border of the graph. The minimum of the symmetric curve for log(log(s)) is

 $log(log(s)) = -1, log(s) = 1/e, s = e^{1/e}.$

this means, this function in β covers all $s > e^{l/e}$ - just the region above the range of the "real-only" case.

In the following graph the red-marked points have coordinates

$$u = \alpha + \beta i = 0 + \pi/2 i$$

$$t = a + b i = 0 + i$$

$$s = e^{\pi/2}$$

Obviously for the two range-definitions dependend on β (where, if $\beta=0$, α can freely be selected), we get the full set of real values s>0 for s.

$\beta = 0,$	$-inf < \alpha < +inf$	$0 < s < e^{1/e}$
$0 < \beta < \pi$	$0 < \alpha < 3$	$e^{1/e} <= s < +inf$

Gottfried

A reference:

See also a related description for ranges of the multivalued Lambert-W-function by Corless et al. where η appears as the parameter β in my formula and $\eta \cot \eta = \beta / sin(\beta) * cos(\beta)$

http://www.cs.uwaterloo.ca/research/tr/1993/03/W.pdf

The curve which separates the principal branch, W_0 , from the branches W_1 and W_{-1} is

$$\{-\eta \cot \eta + \eta i : -\pi < \eta < \pi\}$$

$$(4.4)$$

together with -1 (which is the limiting value at $\eta = 0$). The curve separating W_1 and W_{-1} is simply $(-\infty, -1]$. Finally, the curves separating the remaining branches are

$$\{-\eta \cot \eta + \eta i : 2k\pi < \pm \eta < (2k+1)\pi\} \text{ for } k = 1, 2, \dots$$
(4.5)