1. Fixpoint by construction (for "Tetration-Forum")

1.1. Intro
Denote tetration by the following recursive function:
(0) — (n — o (m) _ T (x)
(111) I'"(x)=x T!"(x)=s" T/"(x)=s
Note, that I begin to use the notation
T ()= xx
instead of the common
T (1)= x*
because
* this seems more consistent with my matrix-approach to tetration and
* allows to define a starting value as top-exponent even for infinite towers (which seems also more
consistent with the idea of an initial value for iterations (including infinite repetitions).
* this seems also to be more consistent with the notion of several fixpoints
* and with the problem of consistency of partial evaluation of an expression which is meant as
being infinitely iterated.
Fixpoints

Since I don't have the Productlog-function ready in Pari/Gp, I used a handwaved recursive tracer to
approximate complex "fixpoints" ¢ for real bases s (and currently have to relate to this), such that
"

(1.1.2.) s=t or s=t
and
(1.1.3.) osto=t

Here I want to have a deeper look into this problem. My approach is here, to assume an arbitrary com-
plex ¢ and see, whether we can construct all real s>0 from this assumtion. In fact, I actually assume a
parameter u, where u=Ilog(t) first, compute the unique ¢ from this and then s. I omit the periodicity for u
for a start.

But the first problem is, can (/.1.2) actually be translated into (/.1.3), if ¢ is complex?

1.2. Question: is xx =Yy one-to-one translatable into y*=x ?

compare: Galidakis: http://ioannis.virtualcomposer2000.com/math/exponents.html ( a bit edited):

X if xisin[1/e,e]

2) xR Y, if X is in (e,+00)
where yis in [1/e, €]
and y satisfies: y(/V=x1/%

In a more graphical shape:

x if—I1<log(x)<1
a:xfzma a=<y ifl<log(x) where—1<log(y)<1

a
1

1 1
and y’ =x*=a

In my understanding this first states the ambiguity of representations for a. In the following the Lam-
bertW-function is discussed to establish the identity of (/./.2) and (/.1.3). And then, working further
through Ionannis' article, I got to the following consideration on my sketchpad.
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1.3. Derivation

Assume the formal relation (in this example I use only the principal branch of logarithm)

7t

(13.1) s=t and u=log(t)

Assume the u as a free parameter and ¢ and s depending on u. Denote the components of 7 and u

(132) u=a+ pfi and t=exp(u)=a+bi
then first
P —

= exp((a+ Bi M(a + bi))
=exp((a+ i) (a - bi)tl?)
(1.3.3) =explaa+ b )* exp( (af3 - ba)i)"™"

Then to have s real, given the parameters u and ¢ it is necessary that

(1.3.4.) either pB=0==>b=0 (the "real-only-case")
(1.3.5) or B =/=0 but (af-ba) =0 (the "complex-to-real” case)

By definition, a and b are functions of @and £, so we need only choose some & and £.
(136) t=a+bi=exp(a+ fi)=exp(a) * (cos(f)+i sin(p))

(137) a= exp(a) * cos(P) b= exp(a) * sin(f)

Then, to have s purely real it is required by (/.3.3), that

(138) (af-ba)=0==>
(13.9) exp(a) *cos(B)f — exp(a) *sin(Bla =0

and since f is an argument of cos() and sin(), it seems best to choose /3 as free parameter and « as the
dependent:

(1.3.10) @ = Bcos(p)/ sin(p)
50
(1.3.11) u = Bcos(P)/sin(f) + i

= f3/sin(f3) * (cos(B) + sin(f3) i)
and a certain selection for f# defines then the whole formula for s.

We have then

_ . _ B, o
(13.12) u = sin( B exp(3i) sin( B (cos( 3 )+ sin( S8 )i)
t =exp(u)
(1.3.13.) 3 cos( 3) " N cos( f3) " ) .
= exp(/)’ Sin( £) )] exp( pi) =exp| S8 Sin( £) )] (cos( )+ sin( 3 )i)
s
(1.3.14) s= ro= exp(*) =exp sin(.f)
B cos( f3)
sin( f3)

with singularities where /3 is a integer multiple of 7z, with the one exception: the singularity at f=0*7 is
removed and & can assume any value in this case. If =0 then «is a free real parameter , u and ¢ are
then real, too, and we get the known form:

1 a a l
(1315) s=t" =exp(*) =exp| —— | = exp(_j =q°
exp(a) a
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1.4. The "real-only” case (real u,t,(B3=0, b=0); real s)

If £=0 (then also b=0), then we may freely choose a having u= and then ¢ = exp(u) =exp(a) we have
due to Euler, the special ranges for

(1.4.1.) s given by 1/¢° <s<e'*
(1.4.2.) 1/e < a=t <e
(1.4.3.) l<oa=u<l

Where a=1 marks also the upper limit for s in the above formula (/.3.15) (when setting /=0):

(144) §= ro= exp(*) = exp(;j =e
exp(1)
for =0, u= |thent=a and s evaluates to (limit)
a -->-00 a-->0 s :ee% —et e =0
a =-1 a =1fe P
a =0 a =1 s=el =1
@ =+1 a =e S zeﬁ —et (maximum)
a --> +o0 a --> 00 s=ef%=em:ef’+”—>eo:]
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1.5. The "complex to real” case B<>0 (complex u,t, real s)

Here we need not separate special ranges for ¢ and/or a; so I display the relations between the parame-
ters in a graph. The x-axis shows the sole independent parameter f3; the imaginary part of u. From here
the parameter « (the real part of u) must satisfy a functional condition dependent on f3; in the graph this
is the blue line. The symmetry wrt the y-axis shows, that the conjugate solution of u applies with the
same parameter ¢. and gives the same result for s.

Functional (and uniquely dependent) on the initial choice of (3 are then also the real and imaginary parts
of t = exp(u). The real and imaginary parts are displayed in magenta color.

And depending on 7 also s = ¢ is functionally defined. It is displayed in green color, and rescaled here
as log(log(s)); this scale is indicated at the right border of the graph. The minimum of the symmetric
curve for log(log(s)) is

log(log(s))=-1, log(s) = 1/e, s = ¢"*.

this means, this function in 3 covers all s > ¢”* - just the region above the range of the "real-only" case.

In the following graph the red-marked points have coordinates

u =a+fi =0+ m2i,

t a+bi =0+1i

w2
N = =e€

Obviously for the two range-definitions dependend on 3 (where, if $=0, & can freely be selected), we
get the full set of real values s>0 for s.

B=0, -inf << +inf 0<s<e”
0<p<rm 0<a<3 e’ <=5 < +inf
Gottfried
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[ Construction of complex fixpoints for high real s>e*(1/e)
4 7
—x—alpha=real(u) —e— b=imag(t)
—x— a=real(t) —>¢—s=real(s) s=e"e”6.33+ 0%
= 3.75E245
2 4 16
t=0+1%i
| 0 ; F5
B 1 0 1 2
B=n/2 a=0
2] 1 4
-4 3
[
=]
®
>
-6 2
s=e”en0.45... + 0%
81 =4.810477... 11
-10 1 0
1 -1
s=eMeM-1+ 0%
=e(1/e)=1.44...
% 2
imag(u)

A reference:

See also a related description for ranges of the multivalued Lambert-W-function by Corless et al. where
71 appears as the parameter /3 in my formula and 77 cot 17 = f5 /sin(fs) *cos(f3)

http://www.cs.uwaterloo.ca/research/tr/1993/03/W.pdf

The curve which separates the principal branch, Wy, from the branches Wy and W_;

{—ncotp+ni:—rwT<n<nw} (4.4)

together with —1 (which is the limiting value at 7 = 0). The curve separating W; and W_,
is simply (—oo, —1]. Finally, the curves separating the remaining branches are

{—ncotn+ni:2kr <tn< (2k+1)r} fork=1,2,... (4.5)
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