Coefficients of the powerseries for f(x) where f(x)=x² + f-1(x)

 

The coefficients of the formal powerseries in all the following tables are listed in the four groups for indexes k=0+4*j, k=1+4*j, k=2+4*j and k=3+4*j so the powerseries must be constructed by reading the coefficientstable rowwise: (see table 1:)

                        f(x) = 0 + 1*x + 0.5*x^2 + 0.25*x^3+0*x^4-0.125*x^5 + …

The values are rounded to at most 20 digits precision

Table 1: coefficients of f(x)

The coefficients are computed by solving the system of linear equations given by the formal-powerseries expression and the functional equation and stored in a columnvector C.

Pari/Gp: msep(Mat(1.0 * C),4)          // generate 4 columns

 

j

k=0+4*j

k=1+4*j

k=2+4*j

k=3 + 4*j

0

0

1.0

0.5

0.25

1

0

-0.125

0

0.203125

2

0

-0.56640625

0

2.2734375

3

0

-12.154296875

0

82.94464111328125

4

0

-703.072265625

0

7256.3267326354980469

5

0

-89745.217952728271484

0

1312224.1918640136719

6

0

-22417090.807624161243

0

442786094.82607311010

7

0

-10019069234.956951141

0

257568676676.25336117

8

0

-7467678385190.8180471

0

242566269546205.76846

9

0

-8774848164193169.9917

0

351620564083979346.32

10

0

-15531448551067605373.

0

7.5286878628995499649E20

11

0

-3.9886735381186916520E22

0

2.3010051165013368823E24

12

0

-1.4404342653983849935E26

0

9.7538778343572586847E27

13

0

-7.1234822648979373949E29

0

5.5956801953184238188E31

14

0

-4.7157972738557446783E33

0

4.2537213112625261693E35

15

0

-4.0976158782126604755E37

0

4.2066740672814747817E39

16

0

-4.5935028310265258395E41

0

5.3253586643677463923E43

17

0

-6.5433717457400760496E45

0

8.5073113921491861915E47

18

0

-1.1685568507605221349E50

0

1.6933178958860089169E52

19

0

-2.5849698234049366885E54

0

4.1517227317727836772E56

20

0

-7.0066881488349954826E58

0

1.2410538803185083949E61

21

0

-2.3044537664409700782E63

0

4.4809863305922725774E65

22

0

-9.1150142765464911615E67

0

1.9377100450137473797E70

23

0

-4.3008667358048960096E72

0

9.9578206430529793498E74

24

0

-2.4028979829281814754E77

0

6.0381785049956473522E79

25

0

-1.5788008990704301692E82

0

4.2920456296404958396E84

26

0

-1.2122560075037148162E87

0

3.5547327262491254371E89

27

0

-1.0814416165454142218E92

0

3.4110997229268980855E94

28

0

-1.1148151395051822886E97

0

3.7727668121842937777E99

29

0

-1.3213152999403604849E102

0

4.7862105959415043382E104

30

0

-1.7921473201822500315E107

0

6.9329453179377657584E109

31

0

-2.7694728223830348788E112

0

1.1418050316520052996E115

 

 

 

Table 2: log10 of absolute values of coefficients of f(x)

The integer part of the log10 of a number |ck| gives the number of digits in the decimal expansion before the decimal-dot. The increase of the logarithms should be at most linear if a formal powerseries shall have nonzero radius of convergence.

 

j

k=1+4*j

k=3 + 4*j

0

0.

-0.60205999132796239043

1

-0.90308998699194358564

-0.69223662167705040208

2

-0.24687196307687466959

0.35668301933803892258

3

1.0847298400086397687

1.9187883323722939419

4

2.8469999664837994578

3.8607168295903467520

5

4.9530113166144502286

6.1180080400484722581

6

7.3505792510700896345

8.6461939739159709878

7

10.000827377729057688

11.410893046677686591

8

12.873185605669029671

14.384830409191622998

9

15.943239610377341108

17.546074266307983625

10

19.191211962386503845

20.876719291797270959

11

22.600828491963983429

24.361917584364352553

12

26.158493443924211440

27.989177311825900496

13

29.852692347390201900

31.747852885702326108

14

33.673555127055327685

35.628769033064220105

15

37.612531244013553107

39.623938864224113932

16

41.662143988371838519

43.726348862948373431

17

45.815801594383245261

47.929792329527255024

18

50.067649845843340696

52.228738498255940763

19

54.412455477563340641

56.618228341930496667

20

58.845512788500562283

61.093790636790470763

21

63.362567999429086196

65.651373619084343911

22

67.959757353212663361

70.287288790634403958

23

72.633555985962319119

74.998164299642405573

24

77.380735332854732323

79.780905947804118377

25

82.198327365038663615

84.632664330394505376

26

87.083594344999769575

89.550806952497907686

27

92.034003078285899425

94.532894416119152577

28

97.047202857923320777

99.576659963082981232

29

102.12100646385606091

104.67999180389779403

30

107.25337370717457670

109.84091777481127122

31

112.44239710764952223

115.05759195250310926

 

 

 

 

Table 3: Differences of log10 of absolute values of coefficients of f(x)

The difference of the logarithms should be at most constant (if not decreasing) if a formal powerseries shall have nonzero radius of convergence. (Here the differences are shown as differences between each fourth coefficent: simply the differences along the columns in the above table).

That first 64 differences increase so far and this suggests that the formal powerseries will have convergence-radius zero.

Caveat: I did not yet perform deeper analysis of that rate of increase of differences of second and higher order and it is not impossible that the rate of increase approximates a constant upper bound and thus the powerseries of f(x) had in fact nonzero radius of convergence.

 

j

k=1+4*j

k=3 + 4*j

0

0.0

-0.60

1

-0.90

-0.09

2

0.65

1.04

3

1.33

1.56

4

1.76

1.94

5

2.10

2.25

6

2.39

2.52

7

2.65

2.76

8

2.87

2.97

9

3.07

3.16

10

3.24

3.33

11

3.40

3.48

12

3.55

3.62

13

3.69

3.75

14

3.82

3.88

15

3.93

3.99

16

4.04

4.10

17

4.15

4.20

18

4.25

4.29

19

4.34

4.38

20

4.43

4.47

21

4.51

4.55

22

4.59

4.63

23

4.67

4.71

24

4.74

4.78

25

4.81

4.85

26

4.88

4.91

27

4.95

4.98

28

5.01

5.04

29

5.07

5.10

30

5.13

5.16

31

5.18

5.21

 

 

 

Table 4: coefficients for an approximating polynomial g(x) according to a Noerlund-sum

The original coefficients are transformed by a matrix-transformation according to the scheme of Noerlund-summation. The process is defined in two steps:

a)            transform the sequence of coefficients in a column-vector C to the sequence of partial sums in a vector S . This can be done by a matrix-multiplication with a lower triangular matrix DR consisting of 1 only: S = DR * C

b)           transform the partial sums in S using a lower triangular matrix M (with all rowsums=1 and certain other required properties) into the transformed vector T by T = M*S . If the sequence of coefficients in T converge they converge to the Noerlund-sum of f(1).

If we want to evaluate f(x) for x<>1 we have to adapt step a)

a1)       The k'th entry in C must be cofactored by xk such that we get the vectors Cx and Sx

It is not trivial to find appropriate matrices M. I've an experimental method derived from Euler-summation which allows two parameters for the control of the "order" (which means power of the method) and seems to allow to sum hypergeometric series if they have alternating signs. I write Ms,t = NoerlundMat(s,t) where s and t are the parameters for the "order". Then the initial transform into partial sums by DR is also included into M, so we do not need the column vector Sx explicitely:

b2)       Ms,t = NoerlundMat(s,t)*DR                     
Tx = Ms,t * Cx

The parameters s and t can roughly be estimated by the growthrate of the coefficients in Cx and then be finetuned to get convergence for a certain truncation of the powerseries to, say, n=128 terms. Finally, if we have appropriate s and t and they are sufficient even for a certain interval of x we can use that configuration for the estimation of the function f(x) for that interval. Then we need no more the complete vector Tx "to see" the converging partial sums but only the last entry. So we can reformulate the evaluation of the function f(x) by the polynomial expression g(x) using the coefficients of the last row of Ms,t only:

c)           g(x) = Ms,t [n , ]*Cx

Finally we can even define fixed coefficients dk for the polynomial g(x) such that

d)           dk = Ms,t[n,k] * C[k]
g(x) = sum ( k=0..n, dk * xk )

and we shall have

                        g(x) ~ f(x)                 in a certain interval for 0 ≤ |x| ≤ <upper bound>

 

Here are such coefficients dk allowing a radius for x of about 0 ≤ |x| ≤ 2 . The parameters for the NoerlundMat were s=2.0, t=2.0 for my implementation of that summation-procedure and likely allow a wider range of x.

 

 

Coefficients dk for g(x) after Noerlund-transformation (2.0,2.0, n=128)

j

k=0+4*j

k=1+4*j

k=2+4*j

k=3 + 4*j

0

0

0.99999852217335088445

0.49995234009056602358

0.24960666720092133995

1

0

-0.11854872816204695391

0

0.13909227071570742428

2

0

-0.16321790298810986304

0

0.14556668797777364888

3

0

-0.092659364396231715751

0

0.042360485241538665072

4

0

-0.014254133187443249926

0

0.0036257690515390767526

5

0

-0.00071408910950032942897

0

0.00011113114508112695202

6

0

-0.000013900223237317901918

0

0.0000014172804184334123117

7

0

-0.00000011920494381165783752

0

0.0000000083541175209951350161

8

0

-0.00000000049203633661723641130

0

2.4534755383571286964E-11

9

0

-1.0423558757682540781E-12

0

3.7939764987149730098E-14

10

0

-1.1887728266728606497E-15

0

3.2198778018906497803E-17

11

0

-7.5664203184159705866E-19

0

1.5474533020412982039E-20

12

0

-2.7618476850193236247E-22

0

4.3116934249302280231E-24

13

0

-5.8995590607700057576E-26

0

7.0864867870306307876E-28

14

0

-7.4828439403818582868E-30

0

6.9532384417708716722E-32

15

0

-5.6902912599374182172E-34

0

4.1033355332885080981E-36

16

0

-2.6080250354221044438E-38

0

1.4610528974835199775E-40

17

0

-7.2126888089847358030E-43

0

3.1361170366164466680E-45

18

0

-1.2001193378053455445E-47

0

4.0378440854142736461E-50

19

0

-1.1928899960931690810E-52

0

3.0894376347056581581E-55

20

0

-7.0008284811803382440E-58

0

1.3849111419296878497E-60

21

0

-2.3852982526906005953E-63

0

3.5659420835481077370E-66

22

0

-4.6107770596120193867E-69

0

5.1353230708805371805E-72

23

0

-4.9036082919980959221E-75

0

3.9927518493304392631E-78

24

0

-2.7550742267283330087E-81

0

1.5994484764619244911E-84

25

0

-7.7472094367919585292E-88

0

3.1002730536866830412E-91

26

0

-1.0132276980188306357E-94

0

2.6672853545167160316E-98

27

0

-5.5621072731599007995E-102

0

9.0014966023065726664E-106

28

0

-1.1018904236646584200E-109

0

9.8710019538348320894E-114

29

0

-6.1929313293258333032E-118

0

2.5595926901140559924E-122

30

0

-6.3637697733415820885E-127

0

8.1989616768106427630E-132

31

0

-4.0894689153726913675E-137

0

3.2919700322651948880E-143

 

so we have

                        g(x)           = 0.99999852217335088445 x +0.49995234009056602358 x2 +0.24960666720092133995 x3
                                               – … + 3.2919700322651948880E-143 x127
                                               ≈f(x)

usable for the interval about 0 ≤ |x| ≤ 2

Gottfried Helms