

Exercises in functional iteration:

the function f(x) = ln(2-exp(-x))

A selfstudy using formal powerseries and operator-matrices

Gottfried Helms 10.12.2010

update 12.02.2011

1. Definition

The function considered is an example taken from a private conversation with

D.Geisler and W.Jagy. Here I discuss properties of fractional iteration of

 f(x) = ln(2–exp(-x))

 f°1(x) = f(x)

 f°0(x) = x

 f°h+1(x) = f°h(f(x)) // meaning the h'th iterate

 f°-1(x) = –ln(2-exp(x)) = –f(–x) // mirroring around the origin

A rough idea can be got by the following plot. The function has real range only for

–ln(2)<x ; this is the right red curve in the following. For x-> inf it approximates the

constant ln(2). For x<-ln(2) the function has the imaginary component Pi*I, (green

lines) and its real part approaches the function f(x)=–x for x->-inf (left red curve)

Because there is the fixpoint f(0)=0 we can construct formal powerseries for arbi-

trary continuous iterates and because f'(x)<1 for x>0 it is an attracting fixpoint and

iteration to positive heights is a very well converging process. Here the coeffi-

cients ck,h for the formal powerseries of a certain iteration-height h can be taken by

a set of polynomials in h which shall be determined later:

 f°h(x) = c1,h*x + c2,h*x2 + c3,h*x3 + …

We shall find, that each coefficient c is a polynomial in the h-parameter which can

be explicitely be determined (without need of recursion)

 Iteration of f(x)=ln(2-exp(-x)) S. -2-

Exercises in functional iteration Mathematical Miniatures

2. Procedere:

2.1. Construct the matrix-operator for the function

 f(x)=ln(2 – exp(-x))

The powerseries for this can be given in rational coefficients:

 f(x) = x - x2 + x3 - 13/12*x4 + 5/4*x5 - 541/360*x6 + 223/120*x7 + O(x8)

The associated matrix-operator M (of infinite size) begins with

 M=

We see, that the coefficients for f(x)0 are in the first column (columnindex c=0),

that for f(x)1 in the second column (c=1), that for f(x)2 in the third column (c=2)

and so on.

2.2. The use of the matrix-operator for expression of the required powerseries

With a "Vandermonde"-like vector-type

 V(x)= row(1 , x , x2 , x3, …)

we can write

 V(x) * M = V(f(x)) = rowvector(1, f(x), f(x)2 , f(x)3, …)

which immediately allows generalization for iterates of f(x).

Let's write the h'th iterate f°h(x) . Then we have, first for integer heights:

 V(x) * Mh = V(f°h(x))

where integer powers of M can exactly be determined by matrix-muliplication of

the triangular matrix with itself. This allows still exact rational arithmetic up to

arbitrary truncation size.

The question is now: can also fractional iterates be determined. The answer is yes;

and this is a known procedure.

 Iteration of f(x)=ln(2-exp(-x)) S. -3-

Exercises in functional iteration Mathematical Miniatures

2.3. fracional powers of a matrix-operator via log/exp

Since f(x) is a function1 having f(0) = 0, f

'(0) = 1 we can determine a matrix-

logarithm which still provides exact arithmetic:

 define M1 = M – ID (where ID is the identity-matrix)

 Log(M) = M1 – M12/2 + M13/3 - … + … (the mercator–series for log)

Then

 L = Log(M)

 Mh = Exp(h * L)

provides the h'th-power of M, again in rational arithmetic.

The logarithm-matrix L has an interesting format:

 L =

The logarithm of an operator-matrix has always the structure that all columns are

smply shifted multiples of the second column; we see, that the coefficients Lr,c in

some col c and row r are just c*Lr+1-c,1.. (Thus the matrix L is not a operator-

matrix!)

And the second column (c=1) gives the coefficients for a function, which we may

call the "iterative-logarithm-function of f(x)", as a function we get:

 lf(x) = - 2(x2 /2! + x4 / 4! + x6 / 6! + ….)

which is also

 lf(x) = -2 (cosh(x) – 1) = 2 – (exp(x) + exp(-x))

A factorially scaled verson of matrix L is

 dF * L * dF-1 = FLf

and begins with

If we want to compute some general power h of the matrix M we have to evaluate

the exponential:

1
 I've seen the term "schlicht"-function for this in older literature (german for "simple function")

 Iteration of f(x)=ln(2-exp(-x)) S. -4-

Exercises in functional iteration Mathematical Miniatures

 Mh = Exp(h * Log (M))

2.4. The half-power of M (using h=1/2) give the half-iterate of f(x)

We can do this for some actual value of h, say h=1/2 to get the powerseries for the

half-iterate. The top left segment of the matrix is

 M1/2 = Exp(1/2 * L) =

and in the second column we find the coefficients of the formal powerseries for

f°0.5(x):

 f°0.5(x) = x - 1/2*x2 + 1/4*x3 - 1/6*x4 + 1/8*x5 - 137/1440*x6 + 71/960*x7 + O(x8)

such that

 V(x) * M0.5 = V(f ° 0.5(x))

or, with a bracket-[row,col]-notation for the extraction of the second column of

matrix M0.5 we write

 f ° 0.5(x) = V(x) * M0.5 [,1] //omitting the row-index means the whole column

2.5. The general power of M and the general iterate of f(x); symbolically

If we want this in more generality, keeping the iteration-height parameter h as

variable we can compute the matrix-exponential symbolically getting the follow-

ing polynomials in h as entries of the h'th power Mh :

 Mh=

where the second column Mh[,1] only is needed to provide the relevant polynomi-

als for the computation of f°h(x).

If we insert, for instance, h=1, we get the original powerseries for f(x), if we insert

h=1/2 we get the coefficients of the powerseries for the half-iterate f°0.5(x) and so

forth.

 Iteration of f(x)=ln(2-exp(-x)) S. -5-

Exercises in functional iteration Mathematical Miniatures

2.6. The bivariate coefficients-matrix POLY

If the coefficients of h in that second column are again represented as a matrix, we

can write this as matrix POLY of coefficients for the bivariate function f°h(x) = V(x)

* POLY * V(h)~

 POLY =

So POLY * V(h)~ gives the second column in Mh and as a bivariate expression in

the matrix-notation we have:

 f°h(x) = V(x) * POLY * V(h)~

 = x * (1)

 + x2 *(– 1*h)

 + x3 *(1*h2)

 + x4 *(–1/12*h – 1*h3)

 + x5 *(1/4*h2 + 1*h4)

 + x6 *(…)

 + …

 Iteration of f(x)=ln(2-exp(-x)) S. -6-

Exercises in functional iteration Mathematical Miniatures

2.7. Explicite descriptions of entries in POLY

It might be of interest, that POLY can be rescaled to provide integer entries only

(heuristically, no proof yet). This is possible using a factorial (similarity) scaling;

here is the top-left segment (assume dF as diagonal matrix of factorials

diag([0!,1!,2!,…]))

 dF *POLY * dF-1 = FPf =

I succeeded in finding a general expression for the entries in FPf and thus for that

in POLY. Assuming the matrix-indices r(ow) and c(ol) beginning at zero we have

for the elements in POLY:

 pr,c =
()

∑
=

−
−









⋅







−
−

⋅−⋅
−− c

k

rk
cr

k
k
c

r 1

1

1
1

)1(
!

)1(1

or with the binomial-coefficient more conveniently adapted:

 pr,c = ()







>







⋅





⋅−⋅⋅

−−

=

∑
=

−

0)1(
1

!

)1(1

0

1

1,

cifk
k
c

cr

cif
c

k

rk
cr

rδ

 where d is the Kronecker-symbol

We see that the pr,c are finitely composed polynomials whose number of terms is

just equal to the column-index c. So to describe the powerseries for the h'th iterate

of f(x) we write:

 f°h(x) = 1x + (p2,1*h) x2 + (p3,2 * h2) x3 + (p4,1 * h + p4,3 * h3) x4 + …

and because we do no more need the matrix-logarithm/matrix-exponential we

can determine that coefficients to arbitrarily many terms in exact rational arith-

metic and thus the whole function with optimal precision.

 Iteration of f(x)=ln(2-exp(-x)) S. -7-

Exercises in functional iteration Mathematical Miniatures

2.8. The function wx(h) (with fixed x) as powerseries in h

It might be of interest to reformulate the function to a fixed parameter x where

only the iteration h is a variable argument. This means that we must introduce a

family of functions g(x,c) which depend on x and use the coefficients of one col-

umn c for its taylorseries. We shall then evaluate the functions g(x,c) first giving

the coefficients for the powerseries of wx(h) in terms of h (which is actually only a

rewriting as wx(h) = f°h(x)) where

 wx(h) = ∑
=

inf

0

*),(
c

c
hcxg

The functions g(x,c) are first powerseries in x using the entries pr,c along the col-

umns of POLY:

 ∑
=

=
inf

1

,),(
r

cr

r
pxcxg

First we can change order of summation because each pr,c is a finitely composed

sum of c terms:

()

()

()∑ ∑

∑ ∑

∑ ∑

= =

−

= =

−

= =

−



















−−⋅






⋅−⋅=


















 −−
⋅⋅⋅






⋅−⋅=

















⋅





⋅−⋅⋅

−−
⋅=

c

k r

r
crk

r

c

k

cr
rrk

r

c

k

rk
cr

r

r

kx

k
c

c

r
xk

k
c

c

k
k
c

cr
xcxg

1

inf

1

inf

0 1

inf

0 1

!

)(
)1(1)1(

1

!

)1(1
)1(

1

)1(
1

!

)1(1
),(

The inner sums can be reformulated into closed forms as exponentials:

 ()∑
=

−








−−−−⋅






⋅−⋅=

c

k

kxckxk
ee

k
c

c
cxg

1

)1()1()1()1(
1

),(

This gives at even indexed columns c=2j >0 :

()

∑

∑

=

=

−









⋅





⋅−⋅=









−−−⋅






⋅−⋅=

c

k

k

c

k

kxkxk

E

kx
k
c

c

ee
k
c

c
cxg

1

1

)sinh()1(
2

)1()1()1(
1

),(

and at odd indexed columns c=2j+1 :

()

∑

∑

=

=

−









−⋅






⋅−⋅=









−+−⋅






⋅−⋅=

c

k

k

c

k

kxkxk

O

kx
k
c

c

ee
k
c

c
cxg

1

1

)1)(cosh()1(
2

)1()1()1(
1

),(

 Iteration of f(x)=ln(2-exp(-x)) S. -8-

Exercises in functional iteration Mathematical Miniatures

Expressed as function in Pari/GP this is

\\ user-function g(x,c) = POLY_column_sum

g(x,c) = if(c==0,return(x)); if(c % 2, g_odd(x,c),g_even(x,c))

 \\ internal functions

 g_even(x,c) = 2/c*sum(k=1,c,(-1)^k*binomial(c,k)*sinh(k*x))

 g_odd (x,c) = 2/c*sum(k=1,c,(-1)^k*binomial(c,k)*(cosh(k*x)-1))

With this, the function wx(h)=f°h(x) is

 ∑
=

=
inf

0

*),()(
c

c

x hcxghw

2.9. Numerical examples

At x=1 this gives numerically:

 w1(h) = 1 - 1.08616126963*h + 1.27645802056*h2 - 1.60687788465*h3

 + 2.13938758000*h4 – 2.97554022629*h5 + 4.27895075604*h6

 – 6.31199338319*h7 + 9.49553583745*h8 + O(h9)

The coefficients seem to increase, but alternate in sign. Before further analysis if I

apply Euler-summation I find results for fractional heights in the unit-interval

0<=h<=1

 height h w
1
(h)=f°

h
(1)

 0.00 1.000000000000

 0.05 0.948694725422

 0.10 0.902729488855

 0.15 0.861269948104

 0.20 0.823653583114

 0.25 0.789346386684

 0.30 0.757912297060

 0.35 0.728991136470

 0.40 0.702282374504

 0.45 0.677532970554

 0.50 0.654528129922

 0.55 0.633084178162

 0.60 0.613042999976

 0.65 0.594267650303

 0.70 0.576638855091

 0.75 0.560052195330

 0.80 0.544415821523

 0.85 0.529648584037

 0.90 0.515678492527

 0.95 0.502441437932

 1.00 0.489880125645

Gottfried Helms, 10.12.2010

