
Determining of and finding patterns in 

n-periodic points of the exp( )-function 
 

Abstract: it is known that for any natural number n>=1 there are infi-

nitely many n-periodic points [B1990]. To answer some question in the 

math-forum MSE [He20c] I needed numerical examples of such n-

periodic points with some given properties. From my little overview in 

the literature in that field I didn't find much helpful information, so I de-

veloped my own method to easily find n-periodic points [He20a].  

The key is not to employ the (iterated) exp()-function itself (and/or its 

Newton-iteration) but to employ the log()-function instead and explic-

itely provide a branchindex k, and for iterated log() to provide a fixed 

vector K of such branch indexes. With this it is possible to apply only it-

eration zj+1 <-- log(zj , K) (not necessarily polished by a following New-

ton-iteration) to find n-periodic points of any order n. Moreover, it 

seems, the sets ℙn of the n-periodic points are exactly indexable by the 

vectors Kn such that each fixed- or n-periodic point is uniquely defined 

by the vectors Kn=[k1,k2,...,kn] (if all ki=0 there are the two conjugate 1-

periodic points to be taken, see below).  

Without proof, I conjecture that this index adresses all existing n-

periodic points, up to conjugacy of the primary fixed point.. 

 

The work is a hobby-exploration, the author is a retired lecturer for sta-

tistics in quantitative social research and has been an active amateur in 

number-theory in various mathematical forums over many years, espe-

cially on the problem of fractional iteration of the exponential function 

("tetration"). 
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1. The indexing of n-periodic points by iterated branched logarithm 

1.1. Notations for iteration of exp() and log().  

We denote f: z -> exp(z) , and in the context of iteration we define & write  

 f°0(z)  :=  z  

 f°1(z)  :=  f (z) 

 f°h+1(z)  :=  f°h(f°1(z))  

We denote g: z -> log(z), and for supplying a branchindex k ∊ ℤ we define & write  

 g(z,k)   :=  log(z)+ k∙ w   where   w=2 π î   

   ...  for vector of branches  

 g(z,[k1,k2])  :=  log(log(z)+ k1∙ w)+ k2∙ w  

 g(z,[k1,k2,...,kn])  :=  log(...log(log(z)+ k1∙ w)+ k2∙ w)...) ... +kn∙ w 

   ... for iteration given one full branch-vector Kn =[ki]i=1..n of length n 

 g°1(z, Kn)  :=  g(z, Kn)   where Kn = [k1,k2,...,kn] 

 g°h+1(z, Kn)   :=  g°h(g°1(z, Kn), Kn)  

 

1.2. "Fixed points", "1-periodic points" 

a) Notations and some known properties 

If  z = f(z) then z is called a fixed-point, or better for this treatize a "1-periodic 

point".  

For the text here, I denote them as p1 or more precisely with p1:k, where k is the 

branch-index such that  

 p1:k =  f ( p1:k  )  

 p1:k =  g ( p1:k , k )   

       and use 

 ℙ1 := {p1:k } k = -oo .. oo  

  for the set of all 1-periodic points 

Theorems in literature -as I have found it so far- are concerned with the question 

of existence, cardinality of the set of fixed points ℙ1, as well as about attraction and 

repulsion of its elements p1:k. It is known (for instance by [B1990],pg 156), that 

- f  has infinitely many fixed points, and that all of them are complex 

- the infinite set of fixed points ℙ1 is countable 

- all fixed points are repelling/"repulsive" over iteration of f. 

b) How to find/how to index: the Lambert W-function 

The standard tool to actually find some fixed point p1 is nowadays surely the Lam-

bert W-function, basically 

 p1 = exp(-W(-1))   

  Note: the "1" occurs as log of the base e of the exponentiation 

Moreover all p1-points can be found using the Lambert W providing a branch-

index k* ∊ ℤ 
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 p1:k* = exp(-Wk*(-1))  where  k*∊ℤ 

  Note: notation for the branched W taken from Corless et. al. [CK1996] 

The infinitude of the fixed points and relation to the index k* of the branch in the 

W-function allows an indexed notation for all fixed points (or 1-periodic points) in 

this type in the analoguous way as in a)  

 ℙ1 := { p1:k* }k*=-oo..oo 

Note: unfortunately the indexes k and k* are slightly different by the convention in the Lambert W-

notation: the ambiguous k=0 is separated in k*=0 or k*=1, and for all other values we have for k<0   

k=-k* and for k>0  k=-k*-1 . But since we do not deal with the Lambert W in the following this differ-

ence is not interesting here. 

c) How to find/how to index : fixpoint-iteration over branched logarithm 

Instead of using the W-function one can use simple fixpoint-iteration over the in-

verse function to f, because a fixed point which is repelling over iteration of f is 

attracting over iteration of its inverse g.  

So we have above defined basically 

   g(z) := log(z)     which is also =f° -1(z)  

The logarithm in the complex numbers is multivalued; to make g(z) a fully usable 

inverse to f(z) we need to explicitely denote the index k for the branch used: 

   g(z,k) := log(z) + k∙w  where w = î 2 π  

and can then, for some z and the principal branch k=0 write  

 g( f (z), 0) = z 

However, for some other z = z' + k ∙w we have to code the branch-index 

 g( f(z), k) = g( f(z'+k∙w), k) =  g( f(z'),k) = z' + k∙w = z  

  which fully recovers the underlying value.  

 Note: perhaps a nicer and full exposition of this in Sykora [Syk16]. 

It is known, that for the exponential-function f all fixpoints are repelling (again for 

instance reported in [B1990]), thus fixpoint iteration on an initial value z0 over the 

logarithm (principal branch) as well as over the logarithm with explicite branch-

index is attractive. Moreover, it seems that the basin of attraction is the punctured 

complex plane ℂ \{0} and per branchindex k with some more exceptions. For in-

stance, if k=0 , then the exceptions are z0∉ {0,1,e,ee,...}.  

So the iteration with some chosen index k  

 z0  = 1+I        // initializing with some value 

 zj+1  = g( zj , k )  // iterating 

 p1:k  = limj-->oo zj  

  approximates an 1-periodic point. . 

Note: if k<>0 it suffices that z0<>0, otherwise z0 ∉ {0,1,e,e^e,...}  

The infinite set ℙ1 of 1-periodic points p1:k can now as well be said to be indexed by 

the branchindex k ∊ ℤ. 

Note: The Lambert W-indexing shall not be of concern in the following because we don't use the 

Lambert W anymore, but for completeness it should be mentioned, that the branchindex k* in the 

Lambert W has an integer shift by some constant compared with that k in the previous paragraph. 

See a table of comparision of the Lambert W-index and the iterated branched logarithm index k in 

Appendix 4.1. 
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1.3. n-periodic points 

The idea of the "fixpoint-iteration using the branched logarithm" for finding and 

even for indexing of the 1-periodic points shall now be generalized to n-periodic 

points with n>=2.  

For the sets of n-periodic points ℙn we know, again for instance by [B1990], that  

      for each n>=2  

- the set ℙn is infinite 

- all pn:K ∊ ℙn are repelling (over iteration of f) 

We assume in the following: because all periodic points are repelling over itera-

tion on f, we'll have again, that  

- all periodic points are attracting over iteration on g. 

- the basin of attraction for all n is ℂ in the same way as with the 1-periodic 

points. 

To express the various branch indexes as iteration goes towards n we expand the 

definition for g() one more time such that we allow a vector K=[k1,k2,...,kn] ,kj ∊ ℤ 

instead of a single branchindex k: 

 g(z,[k1,k2]) := g( g(z,k1),k2)   =log(log(z)+k1∙w)+k2∙w 

 g(z,[k1,k2,...,kn]) := g( ...g( g(z,k1),k2),...kn) 

 

Empirically, we have always the observation of attraction: 

 z0 = <some initial value> 

 zj+1 = g(zj, Kn)  // iteration towards n-periodic point 

 pn:K = limj-->oo zj 

This way we can safely approximate the n-periodic point pn:K iteratively j+1 times 

up to zj. If we append then a Newton-iteration on the function g(zj,Kn) we get 

quadratic approximation rate towards pn:K to arbitrary precision.    

The set of 2-periodic points for instance is then  

 ℙ2 = {p2:[k
1
,k

2
]}k

1
,k

2
 ∊ ℤ 

By heuristics it seems, that this description of ℙ2 indeed captures the whole set of 

2-periodic points; each index K2 gave one 2-periodic point, and there were none 

else found when other methods were tried. 

Note: I tried manual screening of a square area in ℂ around the origin in small steps using Newton-

iteration over f and all so found n-periodic points had a valid Kn-index.   

Note: Y. Galidakis in a 2005-article described a method for finding p2-fixpoints with a function 

called "HyperW()" or "HW()" essentially searching for roots of the polynomials of the truncated 

powerseries for f(f(z))-z. Again all 2-periodic points found with this method had valid K2-indexes. 

Note: I worked with other bases for the exponential function instead of e=exp(1). I found generally  

results in the same style, but sometimes with few exceptions in small n and small ki , for instance for 

base b=î the vector K3=[0,0,0] gave an additional primitive 3-periodic cycle; K3=[-1,0,0] allows two 

different cycles, both attracting for g(,K). The latter occurs the similar way for base b=-1+I;  for an-

other base  K3=[1,0,0] didn't define a 3-periodic point, but K6=[1,0,0,1,0,0] defined a primitive 6-

periodic point instead. That examples are rare, but I've not yet even a usable part of a systematic 

table.  

Anyway, none of such exceptions occured with the base e as I use it in this treatize. 
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1.4. Conjecture about indexing the n-periodic points 

My conjecture by this observations is the following: 

For base e=exp(1) we have  

1) All n-periodic points can uniquely be approximated by fixpoint iteration 

over g(,Kn) with branch indexes Kn independently of the initial value z0. 

  

This has the exception for Kn=[0],[0,0],... where z0 and conj(z0) taken as ini-

tial value lead to the conjugate primary fixpoints p1:[0] and conj(p1:[0]) respec-

tively. 

2) the set of n-periodic fixpoints ℙn is in bijection with the set of vectors Kn, and 

may be called "indexed by Kn" - with the only exception of Kn as mentioned 

in 1)  

There are a lot of more -but rather secondary- observations worth to be made into 

conjectures. Some examples with graphic visualizations are given in part 2. 

Gottfried Helms, May-Jun'2020 
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2. Graphical display of some interesting observations 

 
periodic points per=1..5 (examples) for base c=e= exp(1)
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Pic. 0: This is a picture of the periodic points 

which I found by screening the square around the 

origin of the complex plane for z in -4..4 + -4..+4∙I 

in steps of 1/20. The initial values z were used for 

Newton-iteration over f°1(z), f°2(z),  f°3(z), f°4(z) 

and  f°5(z). The usable found values of the n-

periodic points are plotted (only that which fit in 

the given box). The colors in the plot are indicat-

ing the period lengthes. 

I checked all usable periodic points and found that 

all had valid K-indexes. 

 

 
2-periodic points of f(z)=exp(z)  - K=[-10..10,-10..10]
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Pic. 1:This are 2-periodic points with indexes K=[-

10..10,-10..10] found using the fixpoint itera-

tion as described in 1.1.3 and 1.2. (The picture 

was cutted to size real(p2:k)=0..5 and imag(p2:k)=-

50..50 to keep readability). 

We see, that for K=[k1,k2] with k1=k2 we have 1-

periodic points and for k1=-k2 we get 2-periodic 

points with the two perfect conjugate values in 

one period. 

For [k1,k1] and [-k1,-k1]  we get 1-periodic points 

which are conjugates of each other.  If k1=0 then -

k1=k1 and the conjugate of the primary fixed point 

must be found by using conjugate initial values for 

the fixpoint-iteration. 

 

3-periodic points of f(z)=exp(z) 
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Pic. 2: For display of some examples of 3-periodic 

points (found according to 1.2) I thought it might 

be interesting to show various exemplars of a 

shape-family. With this I mean that the index-

vector K is modified in a way which keeps its in-

ternal structure rather intact, for instance scaling 

all but one of its entries by a overall scaling. (The 

opposite: keeping all but one constant can be seen 

in the picture for the 31-periodic points below) 
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4-periodic points of f(z)=exp(z) 
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Pic. 3: A similar idea of showing a shape-family 

with variation in one subset of indexes k . 

This plot shows 5 exemplars of some 4-periodic 

points with a certain shape. 

 

5-periodic points of f(z)=exp(z)

-80

-60

-40

-20

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

real(z)

im
a
g

(z
)

Shape: K=[ 1,r+2,-r,1,r ]

r=11

r=5

r=1

 

Pic. 4: Similarly for some exemplars of 5-periodic 

points. 

 

13-periodic points of f(z)=exp(z)  (sketch)
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Pic. 5: See that the method can easily find n-

periodic points with another n: n=13 
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31-periodic points of f(z)=exp(z)
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Pic. 6: An especially interesting shape is the one 

of K31=[0,0,....,0,r] because this is nearly the fix-

point iteration towards the primary fixed-point. 

Only that - after the well known attracting orbit 

has arrived near the fixed point - the iteration 

jumps by the parameter k31=r back to the eccen-

tric initial point.  

Having a period of length 31 and a visible spiral 

towards the primary fixed point, this picture gives 

a very instructive view into the internal mechan-

ics of the branched iterated logarithm. 

Outlook: A-periodic points?  

 

(asymptotically) aperiodic points of f(z)=exp(z) 
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Pic. 7: Having seen that it is easily possible to find 

31-periodic points (and even 255-periodic points) 

simply by blindly increasing the length of the 

index-vector K I was interested, how the approxi-

mation to some infinite, aperiodic vector K would 

evolve. One very well known infinite sequence -

only using numbers 0 and 1, being very naturally 

distributed, and being still aperiodic- is the Thue-

Morse sequence. 

Here are the n-periodic points defined by K of in-

creasing length where K contains the leading n 

numbers from the Thue-Morse sequence.  

The shapes overlay very dense, so I add some x-

offset to each shape to avoid this overlap. It 

seems, that increasing the length of K (by dou-

bling) the basic shape stays constant and only 

refines at the edges with very small disturbances. 

 

(asymptotically) a-periodic points of f(z)=exp(z) 
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Pic. 8: The indexes ki in K in the previous example 

are only from the set {0,1}. To see one example, 

where the indexes grow unboundedly (but in a 

tame pattern) I used the coefficients from the 

continued fraction of exp(1). Two of three stay 

constant at 1, and one of three grows unbound-

edly.  

The members of the shape-family have a very 

common form, only the size of the shape grows 

with the length of the K-index. 

Closing words: 

The latter two examples of approaching a-perio-

dic points is so far only experimental and I don't 

have further ideas how to make something out of 

it. 
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4. Appendix 

4.1. Relation between the indexing by Lambert W and by iterated branched loga-

rithm 

Table 1: fixed points  pw:k*=exp(pw:k*) according to the branches in the Lambert-W-function and the 

branchindexes k for the iterated branched logarithm 

 

k* pw:k* = p1:k k 

... ... ... 

-5 3.28777+26.5805*I 4 

-4 3.02024+20.2725*I 3 

-3 2.65319+13.9492*I 2 

-2 2.06228+7.58863*I 1 

-1 0.31813+1.33724*I 0 

0 0.31813-1.33724*I 0 

1 2.06228-7.58863*I -1 

2 2.65319-13.9492*I -2 

3 3.02024-20.2725*I -3 

4 3.28777-26.5805*I -4 

5 3.49852-32.8807*I -5 

... ... ...  

 

Let us use k*=-4 and thus  z0=pw:-4 ~ 3.02+20.27 î . Then we 

have 

 log(z0)+k∙w =  z0        \\ by fixed point property 

 k = ( z0 - log(z0) )/w   

 k = 3 

 ==> g(z0,3) = z0   

  ==>   z0 = p1:[3] is fixed point with index K1=[3] 

 

 


