Abstract: it is known that for any natural number n>=1 there are infinitely many n-periodic points [B1990]. To answer some question in the math-forum MSE [He20c] I needed numerical examples of such nperiodic points with some given properties. From my little overview in the literature in that field I didn't find much helpful information, so I developed my own method to easily find n-periodic points [He20a].

The key is not to employ the (iterated) exp()-function itself (and/or its Newton-iteration) but to employ the log()-function instead and explicitely provide a branchindex k, and for iterated log() to provide a fixed vector **K** of such branch indexes. With this it is possible to apply only iteration $z_{j+1} < -\log(z_j, \mathbf{K})$ (not necessarily polished by a following Newton-iteration) to find n-periodic points of any order n. Moreover, it seems, the sets P_n of the n-periodic points are exactly indexable by the vectors \mathbf{K}_n such that each fixed- or n-periodic point is uniquely defined by the vectors $\mathbf{K}_n = [k_1, k_2, ..., k_n]$ (if all $k_i=0$ there are the two conjugate 1-periodic points to be taken, see below).

Without proof, I **conjecture** that this index adresses all existing *n*-periodic points, up to conjugacy of the primary fixed point.

The work is a hobby-exploration, the author is a retired lecturer for statistics in quantitative social research and has been an active amateur in number-theory in various mathematical forums over many years, especially on the problem of fractional iteration of the exponential function ("tetration").

Determini	ng of and finding patterns in n-periodic points of the exp()-	1
1 The	indexing of n-periodic points by iterated branched logarithm	1 2
1. 1.1.	Notations for iteration of exp() and log()	
1.2.	"Fixed points", "1-periodic points"	
1.3.	n-periodic points	
1.4.	Conjecture about indexing the n-periodic points	5
2. Gra	aphical display of some interesting observations	6
3. Lite	erature and links	9
4. App 4.1	<i>bendix</i> Relation between the Lambert W indexing and the iterated branched	

1. The indexing of *n*-periodic points by iterated branched logarithm

1.1. Notations for iteration of *exp()* and *log()*.

We denote *f*: *z* -> *exp*(*z*) , and in the context of iteration we define & write

 $\begin{aligned} f^{\circ 0}(z) & := z \\ f^{\circ 1}(z) & := f(z) \\ f^{\circ h+1}(z) & := f^{\circ h}(f^{\circ 1}(z)) \end{aligned}$

We denote $g: z \rightarrow log(z)$, and for supplying a branchindex $k \in \mathbb{Z}$ we define & write

$$g(z,k)$$
 := $log(z) + k \cdot w$ where $w=2\pi i$

... for vector of branches

$g(z,[k_1,k_2])$	$:= \log(\log(z) + k_1 \cdot w) + k_2 \cdot w$
$g(z,[k_1,k_2,,k_n])$:= $log(log(log(z) + k_1 \cdot w) + k_2 \cdot w)) + k_n \cdot w$

... for iteration given one full branch-vector $K_n = [k_i]_{i=1..n}$ of length *n*

$$g^{\circ 1}(z, K_n) := g(z, K_n) \quad \text{where } K_n = [k_1, k_2, ..., k_n]$$

$$g^{\circ h+1}(z, K_n) := g^{\circ h}(g^{\circ 1}(z, K_n), K_n)$$

1.2. "Fixed points", "1-periodic points"

a) Notations and some known properties

If z = f(z) then z is called a fixed-point, or better for this treatize a "1-periodic point".

For the text here, I denote them as p_1 or more precisely with $p_{1:k}$, where k is the branch-index such that

$$p_{1:k} = f(p_{1:k})$$

$$p_{1:k} = g(p_{1:k}, k)$$
and use
$$P_{1} := \{p_{1:k}\}_{k=-00...00}$$

for the set of all 1-periodic points

Theorems in literature -as I have found it so far- are concerned with the question of existence, cardinality of the set of fixed points P_1 , as well as about attraction and repulsion of its elements $p_{1:k}$. It is known (for instance by [B1990],pg 156), that

- f has infinitely many fixed points, and that all of them are complex

- the infinite set of fixed points P_1 is countable
- all fixed points are repelling/"repulsive" over iteration of f.

b) How to find/how to index: the Lambert *W*-function

The standard tool to actually find some fixed point p_1 is nowadays surely the Lambert W-function, basically

 $p_1 = exp(-W(-1))$

Note: the "1" occurs as log of the base e of the exponentiation

Moreover **all** p_1 -points can be found using the Lambert **W** providing a branchindex $k^* \in \mathbb{Z}$ 1

$$\mathcal{D}_{1:k*} = exp(-W_{k*}(-1))$$
 where $k^* \in \mathbb{Z}$

Note: notation for the branched W taken from Corless et. al. [CK1996]

The infinitude of the fixed points and relation to the index k^* of the branch in the *W*-function allows an indexed notation for all fixed points (or *1*-periodic points) in this type in the analoguous way as in *a*)

 ${I\!\!P}_1:=\{\,p_{1:k^*}\}_{k^*=\text{-}oo..oo}$

Note: unfortunately the indexes k and k* are slightly different by the convention in the Lambert Wnotation: the ambiguous k=0 is separated in k*=0 or k*=1, and for all other values we have for k<0k=-k* and for k>0 k=-k*-1. But since we do not deal with the Lambert W in the following this difference is not interesting here.

c) How to find/how to index : fixpoint-iteration over branched logarithm

Instead of using the W-function one can use simple fixpoint-iteration over the inverse function to f, because a fixed point which is repelling over iteration of f is attracting over iteration of its inverse g.

So we have above defined basically

g(z) := log(z) which is also $= f^{\circ -1}(z)$

The logarithm in the complex numbers is multivalued; to make g(z) a fully usable inverse to f(z) we need to explicitly denote the index k for the branch used:

$$g(z,k) := log(z) + k \cdot w$$
 where $w = i 2 \pi$

and can then, for some *z* and the principal branch *k=0* write

g(f(z), 0) = z

However, for some other $z = z' + k \cdot w$ we have to code the branch-index

 $g(f(z), k) = g(f(z'+k\cdot w), k) = g(f(z'), k) = z' + k\cdot w = z$

which fully recovers the underlying value.

Note: perhaps a nicer and full exposition of this in Sykora [Syk16].

It is known, that for the exponential-function f all fixpoints are repelling (again for instance reported in [B1990]), thus fixpoint iteration on an initial value z_0 over the logarithm (principal branch) as well as over the logarithm with explicite branch-index is <u>attractive</u>. Moreover, it seems that the <u>basin of attraction</u> is the punctured complex plane $C \setminus \{0\}$ and per branchindex k with some more exceptions. For in-

stance, if k=0, then the exceptions are $z_0 \notin \{0, 1, e, e^e, ...\}$.

So the iteration with some chosen index *k*

Z_0	= 1+I	// initializing with some value
<i>Z</i> _{<i>j</i>+1}	$=g(z_j,k)$	// iterating
<i>p</i> _{1:k}	<i>= lim_{j>00} z</i> j	

approximates an 1-periodic point..

Note: if k<>0 it suffices that z_0 <>0, otherwise $z_0 \notin \{0,1,e,e^{e},...\}$

The infinite set P_1 of 1-periodic points $p_{1:k}$ can now as well be said to be indexed by the branchindex $k \in \mathbb{Z}$.

Note: The Lambert **W**-indexing shall not be of concern in the following because we don't use the Lambert **W** anymore, but for completeness it should be mentioned, that the branchindex k^* in the Lambert **W** has an integer shift by some constant compared with that k in the previous paragraph. See a table of comparision of the Lambert **W**-index and the iterated branched logarithm index k in Appendix 4.1.

1.3. *n*-periodic points

The idea of the "*fixpoint-iteration using the branched logarithm*" for finding and even for indexing of the 1-periodic points shall now be generalized to *n*-periodic points with n>=2.

For the sets of *n*-periodic points P_n we know, again for instance by [B1990], that

for each *n>=2*

- the set P_n is infinite
- all $p_{n:K} \in P_n$ are repelling (over iteration of f)

We assume in the following: because all periodic points are repelling over iteration on *f*, we'll have again, that

- all periodic points are attracting over iteration on *g*.
- the basin of attraction for all *n* is *C* in the same way as with the *1*-periodic points.

To express the various branch indexes as iteration goes towards *n* we expand the definition for *g()* one more time such that we allow a vector $\mathbf{K}=[k_1,k_2,...,k_n]$, $k_j \in \mathbb{Z}$ instead of a single branchindex *k*:

 $g(z,[k_1,k_2]) := g(g(z,k_1),k_2)$ $g(z,[k_1,k_2,...,k_n]) := g(...g(g(z,k_1),k_2),...,k_n)$ $= log(log(z)+k_1\cdot w)+k_2\cdot w$

Empirically, we have always the observation of attraction:

 $z_0 = <$ some initial value> $z_{j+1} = g(z_j, \mathbf{K}_n)$ // iteration towards n-periodic point $p_{n:K} = \lim_{j \to \infty} z_j$

This way we can safely approximate the *n*-periodic point $p_{n:K}$ iteratively j+1 times up to z_j . If we append then a Newton-iteration on the function $g(z_j, K_n)$ we get quadratic approximation rate towards $p_{n:K}$ to arbitrary precision.

The set of 2-periodic points for instance is then

 $P_{2} = \{p_{2:[k_{1'}k_{2}]}\}_{k_{1'}k_{2} \in \mathbb{Z}}$

By heuristics it seems, that this description of P_2 indeed captures the whole set of 2-periodic points; each index K_2 gave one 2-periodic point, and there were none else found when other methods were tried.

Note: I tried manual screening of a square area in C around the origin in small steps using Newtoniteration over f and all so found n-periodic points had a valid K_n -index.

Note: Y. Galidakis in a 2005-article described a method for finding p_2 -fixpoints with a function called "HyperW()" or "HW()" essentially searching for roots of the polynomials of the truncated powerseries for f(f(z))-z. Again all 2-periodic points found with this method had valid K_2 -indexes.

Note: I worked with other bases for the exponential function instead of e=exp(1). I found generally results in the same style, but sometimes with few exceptions in small n and small k_i , for instance for base $b=\hat{i}$ the vector $\mathbf{K}_3=[0,0,0]$ gave an additional primitive 3-periodic cycle; $\mathbf{K}_3=[-1,0,0]$ allows two different cycles, both attracting for g(,K). The latter occurs the similar way for base b=-1+I; for another base $\mathbf{K}_3=[1,0,0]$ didn't define a 3-periodic point, but $\mathbf{K}_6=[1,0,0,1,0,0]$ defined a primitive 6-periodic point instead. That examples are rare, but I've not yet even a usable part of a systematic table.

Anyway, none of such exceptions occured with the base e as I use it in this treatize.

1.4. Conjecture about indexing the *n*-periodic points

My conjecture by this observations is the following:

For base e = exp(1) we have

1) All *n*-periodic points can uniquely be approximated by fixpoint iteration over $g(K_n)$ with branch indexes K_n independently of the initial value z_0 .

This has the exception for $K_n=[0],[0,0],...$ where z_0 and $conj(z_0)$ taken as initial value lead to the conjugate primary fixpoints $p_{1:[0]}$ and $conj(p_{1:[0]})$ respectively.

2) the set of *n*-periodic fixpoints P_n is in bijection with the set of vectors K_n , and may be called "*indexed by* K_n " - with the only exception of K_n as mentioned in 1)

There are a lot of more -but rather secondary- observations worth to be made into conjectures. Some examples with graphic visualizations are given in part 2.

Gottfried Helms, May-Jun'2020

2. Graphical display of some interesting observations

<u>Pic. 0</u>: This is a picture of the periodic points which I found by screening the square around the origin of the complex plane for z in $-4..4 + -4..+4\cdot I$ in steps of 1/20. The initial values z were used for Newton-iteration over $f^{\circ 1}(z)$, $f^{\circ 2}(z)$, $f^{\circ 3}(z)$, $f^{\circ 4}(z)$ and $f^{\circ 5}(z)$. The usable found values of the *n*-periodic points are plotted (only that which fit in the given box). The colors in the plot are indicating the period lengthes.

I checked all usable periodic points and found that all had valid *K*-indexes.

Pic. 1: This are 2-periodic points with indexes K = [-10..10, -10..10] found using the fixpoint iteration as described in 1.1.3 and 1.2. (The picture was cutted to size $real(p_{2:k})=0..5$ and $imag(p_{2:k})=-50..50$ to keep readability).

We see, that for $K = [k_1, k_2]$ with $k_1 = k_2$ we have 1-periodic points and for $k_1 = -k_2$ we get 2-periodic points with the two perfect conjugate values in one period.

For $[k_1,k_1]$ and $[-k_1,-k_1]$ we get 1-periodic points which are conjugates of each other. If $k_1=0$ then $k_1=k_1$ and the conjugate of the primary fixed point must be found by using conjugate initial values for the fixpoint-iteration.

Pic. 2: For display of some examples of 3-periodic points (found according to 1.2) I thought it might be interesting to show various exemplars of a *shape-family*. With this I mean that the indexvector **K** is modified in a way which keeps its internal structure rather intact, for instance scaling all but one of its entries by a overall scaling. (The opposite: keeping all but one constant can be seen in the picture for the *31*-periodic points below)

<u>Pic. 3</u>: A similar idea of showing a shape-family with variation in one subset of indexes k.

This plot shows 5 exemplars of some 4-periodic points with a certain shape.

Pic. 4: Similarly for some exemplars of *5*-periodic points.

<u>Pic. 5</u>: See that the method can easily find *n*-periodic points with another n: n=13

Pic. 6: An especially interesting shape is the one of $K_{31}=[0,0,...,0,r]$ because this is nearly the fixpoint iteration towards the primary fixed-point. Only that - after the well known attracting orbit has arrived near the fixed point - the iteration jumps by the parameter $k_{31}=r$ back to the eccentric initial point.

Having a period of length *31* and a visible spiral towards the primary fixed point, this picture gives a very instructive view into the internal mechanics of the branched iterated logarithm.

Pic. 7: Having seen that it is easily possible to find *31*-periodic points (and even *255*-periodic points) simply by blindly increasing the length of the index-vector *K* I was interested, how the approximation to some infinite, *aperiodic* vector *K* would evolve. One very well known infinite sequence - only using numbers *0* and *1*, being very naturally distributed, and being still aperiodic- is the Thue-Morse sequence.

Here are the *n*-periodic points defined by K of increasing length where K contains the leading n numbers from the Thue-Morse sequence.

The shapes overlay very dense, so I add some x-offset to each shape to avoid this overlap. It seems, that increasing the length of K (by doubling) the basic shape stays constant and only refines at the edges with very small disturbances.

Pic. 8: The indexes k_i in K in the previous example are only from the set {0,1}. To see one example, where the indexes grow unboundedly (but in a tame pattern) I used the coefficients from the continued fraction of exp(1). Two of three stay constant at 1, and one of three grows unboundedly.

The members of the shape-family have a very common form, only the size of the shape grows with the length of the *K*-index.

Closing words:

The latter two examples of approaching a-periodic points is so far only experimental and I don't have further ideas how to make something out of it.

S. -9-

3. Literature and links

- [B1990] Bergweiler, Walter: Fix-points of meromorphic functions and iterated entire functions J. Math. Anal. Appl. 151, No. 1, 261-274 (1990). <u>https://zbmath.org/?q=an:0717.30023</u>
- [B1991] Bergweiler, Walter: Periodische Punkte bei der Iteration ganzer Funktionen Aachen: Rheinisch-Westfälische Techn. Hochsch., Math.-Naturwiss. Fak., Habil.-Schr. 51 S. (1991). <u>https://zbmath.org/?q=an:0728.30021</u>
- [CK1996] Corless, R.; Gonnet, G.; Hare, D.; Jeffrey, D.; Knuth, Donald: On the Lambert W function Advances in Computational Mathematics. 5: 329–359 (1996).
- [Gal05] Galidakis, I. N. : On solving the *p*-th complex auxiliary equation $f^{(p)}(z) = z$, Complex Variables, Theory and Application: An International Journal, 50:13, 977-997, (2005) DOI: <u>10.1080/02781070500156827</u>
- [Gal07] Galidakis,I. N. : On some applications of the generalized hyper-Lambert functions Complex Variables and Elliptic Equations,Volume 52, 2007 - Issue 12, Published online: 21 Nov 2007 <u>https://doi.org/10.1080/17476930701589563</u>
- [K1949] Kneser, Hellmuth: Real analytic solutions of the equation $\varphi(\varphi(x))=e^{\chi}$ and related functional equations. (Reelle analytische Lösungen der Gleichung $\varphi(\varphi(x))=e^{\chi}$ und verwandter Funktionalgleichungen.) J. Reine Angew. Math. 187, 56-67 (1949)(German). <u>Zbl0035.04801.4</u>
- [SR15] Shen, Zhaiming; Rempe-Gillen, Lasse: The exponential map is chaotic: an invitation to transcendental dynamics Am. Math. Mon. 122, No. 10, 919-940 (2015). <u>ZBL1361.37002.5</u>
- [Syk16] Sykora, S.: Fixed points of the mappings *exp(z)* and *-exp(z)* in *C* Stan's Library, Vol.VI, Oct 2016, DOI: <u>10.3247/SL6Math16.002</u> <u>http://ebyte.it/library/docs/math16/FixedPointsExp.html</u>.

Links to some author's questions and answers in math.stackexchange.com and mathoverflow.net

- [He20a] Helms, Gottfried: How to find examples of periodic points of the (complex) exponential-function z --> exp(z)? - presenting the initial idea URL (version: 2020-05-14): <u>https://math.stackexchange.com/q/3674391</u> (<u>https://math.stackexchange.com/users/1714/gottfried-helms</u>)
- [He20b] Helms, Gottfried: Is my ansatz for finding *n* -periodic-points of the exponential-function exhaustive? and asking for help for proving URL (version: 2020-06-21): <u>https://mathoverflow.net/q/361136</u> (<u>https://mathoverflow.net/users/7710/gottfried-helms</u>)
- [He20c] Helms, Gottfried: Is there a way to calculate the zeros of $f(z,w) = w z^{z^{w}}$? Answer 1 URL (version: 2020-06-08): <u>https://math.stackexchange.com/q/3707910</u> (<u>https://math.stackexchange.com/users/1714/gottfried-helms</u>)
- [He20d] Helms, Gottfried: Is there a way to calculate the zeros of $f(z,w) = w z^{z^{w}}$? Answer 2 URL (version: 2020-06-19): <u>https://math.stackexchange.com/q/3713978</u> (<u>https://math.stackexchange.com/users/1714/gottfried-helms</u>)

4. Appendix

4.1. Relation between the indexing by Lambert W and by iterated branched logarithm

Table 1: fixed points $p_{w:k^*}=exp(p_{w:k^*})$ according to the branches in the Lambert-*W*-function and the branchindexes *k* for the iterated branched logarithm

k*	$p_{w:k*} = p_{1:k}$	k
-5	3.28777+26.5805*I	4
-4	3.02024+20.2725*I	3
-3	2.65319+13.9492*I	2
-2	2.06228+7.58863*I	1
-1	0.31813+1.33724*I	0
0	0.31813-1.33724*I	0
1	2.06228-7.58863*I	-1
2	2.65319-13.9492*I	-2
3	3.02024-20.2725*I	-3
4	3.28777-26.5805*I	-4
5	3.49852-32.8807*I	-5

Let us use $k^*=-4$ and thus $z_0=p_{w:-4} \sim 3.02+20.27 \hat{i}$. Then we have

 $log(z_0)+k \cdot w = z_0 \quad | by fixed point property$ $k = (z_0 - log(z_0))/w$ k = 3 $==> g(z_0,3) = z_0$ $==> z_0 = p_{1:[3]} is fixed point with index K_1=[3]$