
 

Eulerian summation (part 2): 
Aspects of the "Eulerian transformation"  

for some divergent and non-summable cases  
 

The "Eulerian summation" for divergent series as described initially in my 
older article [Eulerian2007] is furtherly explorated for the cases, where 
the divergent series cannot be summed, that are for instance the geomet-
ric series with q>=1 and zeta-series with s<=1. 

In 2014 a surprising connection with probability theory occured. We find a 
formula in the concept of "renewal-theory" which expresses coordinates in 
the composition of uniform distributions - and that formula matches per-
fectly the formula for the partial sums in the Eulerian-transform of the 
geometric series with quotient 1 resp of the zeta-series at the argument 0. 
I do not currently know whether this might point to some generalizations 
in the discussion of composition of distributions as well. 
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1. Intro: Motivation and notation 

1.1. Overview 

A couple of years ago I've toyed around with a matrix-summation-method based on 

the matrix of the Eulerian numbers. It has some resemblance to the Borel-

summation because it involves the transformation of the series-to-be-summed into 

another series, whose terms are scaled by reciprocal factorials, and - for instance - 

by the transformation of a geometric series produces an infinite sequence of expo-

nential series. Exponential series are entire and thus each of them allows arguments 

from the whole complex plane. The Eulerian-summation, of course, means then a) to 

sum the evaluations of that sequence of exponential series and b) to see, whether 

that evaluations form a summable series. 

While that "Eulerian" summation procedure extends the summability of the geomet-

ric series with quotient q to the complex half plane Real(q)<1 and even allows to 

sum the alternating hypergeometric series (first time done by L. Euler by other 

means), non-alternating divergent series cannot be summed1: while the trans-

formed series has still well defined terms, that terms are increasing and would 

themselves form a series which is again divergent (with even more divergence).  

However, even in that non-summable cases the initial "Eulerian" transformations 

alone have interesting properties and these properties of the "Eulerian" transforma-

tions of the geometric and the Dirichlet series for the divergent and nonsummable 

cases are the main focus of this article.  

At the end I look at properties of some (improper) equations and (thus speculative) 

coefficients but for which I've not yet a meaningful interpretation in any other con-

text. 

1.2. Review of used mathematical tools and notational definitions 

a) The description of the summation-method is based on the notion of matrices and 

vectors for my own convenience in notation and intuition.  

Matrices and vectors are all of infinite size. By default, I assume a vector (say A for 

example) as a row-vector and the following notations to declare/use them 

 as column-vector: 'A  
 as diagonal-matrix: `A  

The transposition-symbol for vectors or matrices 

 AT or A~   (the latter taken from the convention in Pari/GP) 

The indices of a vector/matrix begin at zero: n rows are the rows 0 to rows n-1  

 Mr,c  where the first index refers to the row and the second to the column 

and if I talk about the elements of a matrix or a vector I denote them with small let-

ters preferably taken from the name of the matrix which in most cases are named by 

a bold capital letter: 

 A = [a0, a1, a2, ... ]  (row) vector A and its scalar components 

Let's also use U as the (infinite) unit-vector U = [1,1,1,1,...] for ease of notation. 

 

                                                 
1
 I have a remark in my ear (but forgot its source) which goes: "a valid/regular matrix summation method must fail for divergent 

non-alternating series" - in this case for instance for the geometric series q>=1 , for Dirichlet series for s<=1 or the 

nonalternating version of the hypergeometric series.  
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b) We introduce a notation with some argument x for a type of infinite-sized vector 

which I think is best called "Vandermonde-vector" so I give it the symbolical name 

"V(x)": 

 V(x) = [1, x, x2, x3, ... ] 

The dot-product, initially taken as purely formal, 

 V(x) ∙ 'A = a0 + a1 x + a2 x2 + ...  

is then a simple notation for a formal powerseries 

 f(x) = V(x) ∙ 'A = ∑ xk ak 

Of course I use the same notation for the reference to the actual evaluation , for in-

stance 

  f(2) = V(2) ∙ 'A 

 and if, for instance, A contains the consecutive reciprocal factorials 

  A = [1/0! , 1/1!, 1/2!, 1/3!, ...] 

 V(x) ∙ 'A = exp(x) in the sense of a formal power series but also 
 V(2) ∙ 'A = e2   in the sense of an actual evaluation 

 

 

c) With the same logic I use a "Dirichlet" or  "Zeta-vector" with one argument of the 

form 

 Z(m) = [1/1m,  1/2m, 1/3m, 1/4m,  .... ] 

such that we can write 

 Z(m) ∙  'U  = ζ(m)  the formal notation for the series 
 Z(2) ∙ 'U = ζ(2) = π²/6 the evaluation at some point 

 

 

d) Finally I use a "factorial" vector of the form 

 G = [0!,  1!, 2!, 3! ,   .... ] (the letter G is taken to remind of the Gamma-function) 
 g = [ 1, 1, 1/2!, 1/3!, ... ]    (just use this as an additional notation for convenience 
  `g = `G -1          

such that we can write 

 V(x) ∙ 'g  = exp(x)  the formal notation for the exponential series 
 V(2) ∙ 'g = e2  the evaluation at some point 

 

 

e) Basis of the summation method is the matrix of Eulerian numbers (which I've 

explained in more detail in [Eulerian2007]) 

Matrix of Eulerian numbers : 

 

 
(Infinite size is always assumed!) 
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It has the interesting and well known2 property, that the sums along its rows are 

just the factorials.  

Thus, if we rescale its rows by the reciprocal factorials, we get a matrix with all row-

sums equal 1. Let's call that matrix "E" in the following.  

We can thus for instance write: 

 E ∙ 'U = 'U  

∙  

 

 =  

 

 

 

f) So for instance, the formal dot-product 

 V(x) ∙ E = Y(x) 

defines a row-vector Y (with the argument x), whose entries contain formal expo-

nential series and their derivatives (according to the definitions of the columns in 

E),  

 Y(x) = [exp(x), exp(2x)-2x exp(x), ... ]  (for more entries see below) 

and which can be evaluated for all arguments x, because the exponential-series is 

entire: 

 Y(x) = [ex , e2x - 2xex , ... ] and  
 Y(1) = [ e, e2 - 2e , ... ]  

 

 

g) For a general function (not discussed here) with a formal powerseries   

like f(x)=a0 + a1x + a2x2 + a3x3 +  ... rewritten as dot-product with some   

vector A=[a0, a1, a2, a3,...]  

 f(x) = V(x) ∙ 'A   

and the basic function-transform3 : 

 g(x) = V(x) ∙ `g ∙  'A = ∑
=

oo

k

k

k

k

xa

0 !
 

the (here newly and basically introduced) "Eulerian transform" is 

 V(x) ∙ `A ∙ E  = Y(x) 

 

 

                                                 
2
 See for instance: Handbook of mathematical functions online [NIST:Eulerian] or Wikipedia [WP:EulerianNumbers] 

3
 the same basic transformation is also employed in the Borel-summation for divergent series 
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and the entries in the resulting vector Y(x) are 

 y0 = g(x) 
 y1 = g(2x) - (g(x)+ x g'(x)) 
 y2 = g(3x) - (g(2x)+ (2x) g'(2x)) +  (x g'(x)+ x2 g''(x)/2!) 
 ... 

The full evaluation of the "Eulerian summation" requires now to evaluate the series 

of the sequence of yk if this is possible: because it is a) either convergent, b) summa-

ble by some other summation-procedures (like for instance Cesaro-, Euler- etc 

summation) or c) by analytic continuation. 

This requires the general description of the partial sums; we find here that the par-

tial sums up to some columnindex c are  

 s0 = y0  = g(1x) 
 s1 = y0 +y1  = g(2x) - (1x) g'(1x)/1! 
 s2 =  = g(3x) - (2x) g'(2x)/1! +  (1x)2 g''(1x)/2! 
 ... 
limc->oo sc =  f(x) = g((c+1)x) - (cx) g'(cx)/1! + ((c-1)x)2 g''((c-1)x)/2! -...+  

 (For more detail see appendix ) 

 

1.3. A surprising relation to a problem in mixing distributions  

(theory of probability) 

In a question of mine in the discussion-board "math.stackexchange" [MSE] a con-

tributor pointed to an earlier question in "mathoverflow" [MO], which had asked for 

the proof of a formula which involves the topic of "composition of uniform distribu-
tions" and which employs the same observation about the composition of the Y(x) 

vector at x=1 for Y(1) = V(1) ∙ E , in that it looks at the partial sums of Y(1)  (but spe-

cifically with the argument x=1 only). 

This is of course a nice coincidence; but because my discussion here gives a much 

more general framework in which this small formula is only a detail, this coinci-

dence suggests generalizations of the "composition of distributions" matter itself 

(and from this possibly in a similarly generalized "renewal-process" problem). Un-

fortunately I cannot yet recognize, which of the two frameworks - that of V(x) ∙ E or 

that of Z(m) ∙ E - might provide some such meaningful generalization - if there is 

some meaningful generalization at all. 

See also for instance one entry in the OEIS for the constant s2 as the 3rd partial sum 

of the columns of   Y(1)=V(1)∙E (written as Y(0) = [y0, y1, y2, y3,...] and s2 = y0 + y1 + y2 ~ 
6.66656564... )  

 

 

 

 

 

 

 

where the first s0, s1, s2, s3, s4 exist as constants in the OEIS-database: 

 A001113 =s0, A090142 =s1, A089139 =s3, A090611 =s4 

A090143  Decimal expansion of e^3-2e^2+e/2.  
COMMENTS  Expected number of picks from a uniform [0,1] needed to first exceed a sum 

of 3.  

LINKS  Table of n, a(n) for n=1..102.  
Eric Weisstein's World of Mathematics, Uniform Sum Distribution  

EXAMPLE  6.66656564...  

CROSSREFS  Cf. A001113, A090142, A089139, A090611.  
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2. Geometric series: Eulerian transformations (for the non-summable cases) 

2.1. Intro 

The usual summation of a geometric series can be written as a formal dotproduct: 

 f(x) = V(x) ∙ 'U = 1 + x + x2 + ...  

and it has, even for the divergent cases |x| ≥ 1 except for x=1, the standard evalua-

tion to 

 f(x) = 
x−1

1
 for instance  f(2) = 

21

1

−
= -1 

   by analytic continuation.  

I define the "Eulerian transformation" to be: 

(2.1)  V(x) ∙ E = Y(x) 

and the meaning of the statement, that the "Eulerian summation" can sum the geo-

metric series for some range of x means/implies, that in the formulae 

 V(x) ∙ 'U = f(x) (by geometric series) 
 Y(x) ∙ 'U = f(x) (by sum of Eulerian transformation) 

 the two versions evaluate to the same f(x), which might also be displayed as

  1
1

1
)(

00

<<−=
−

== ∑∑
==

xooy
x

xxf
oo

k

k

oo

k

k  

or in words: the vector V(x) and the resulting vector Y(x) as its "Eulerian transfor-

mation" have the same vector-sum for some argument x - of course so far only in 

the range of summability when  -oo<x<1 (as derived in the first part of this 

treatize). 

But the goal of this part is to study the properties of the Eulerian transform for the 

cases where x ≥ 1 exceeds the summability range - to perhaps understand and 

formalize the occuring differences of the results. 

2.2. Analytic description of the entries in Y(x) 

The basic eulerian transform of a geometric series f(x) = 1 + x + x2 + x3 + ...  is simply 

taken by the dot-product of V(x) and A0 :  

 g0(x) = V(x) ∙ A0 
   = 1 + x/1! + x2/2! + x3/3! + ...  
  = exp(x) 

From 1.2 we know, that Y(x) in (2.1) is well defined for all x, because the exponen-

tial series g(x) (and all its derivatives) is/are entire functions and all entries in Y(x) 

are computable as finite polynomials of powers of g(x) and its derivatives, and thus 

finally even simply in terms of powers of ex .  

The question of summability reduces then to the question of diver-

gence/convergence of the transformed series Y(x)∙ 'U , so the analytic properties of 

Y(x) are now of basic importance. 
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By the description of compositions4 of the columns of the Eulerian matrix E we find 

that the first few entries in Y(x) are: 

(2.2.1) g0 (x) =   e1x  
 g1 (x) = (e2x - 1x e1x )   -   (e1x  ) 
 g2 (x)= (e3x - 2x e2x  + (1x)2 e1x /2! )  -  (e2x - 1x e1x ) 
 g3 (x)= (e4x - 3x e3x  + (2x)2 e2x /2!  - (1x)3e1x /3! )  -  (e3x - 2x e2x  + (1x)2 e1x /2! ) 
 ... 

This can better be memorized by introduction of a substitution µ = -x e-x  

 y0 =µ=-xe-x e1x[1                                                             ]   

 y1 =µ=-xe-x e2x[1 + (1µ)/1!                                            ]  -  e1x[1                                     ] 

 y2 =µ=-xe-x e3x[1 + (2µ)/1!  + (1µ)2 /2!                       ]  -  e2x[1- (1µ)                            ] 

 y3 =µ=-xe-x e4x[1 + (3µ)/1!  + (2µ)2 /2!  +  (1µ)3 /3! ]  -  e3x[1 + (2µ)/1! + (1µ)2/2!   ] 

 ... 

The general expression for the entry in column c is the finite sum:  

(2.2.2) ∑
−+=

=

−
+ +⋅

−+=
c

kct
k

tx
kk

kxc

c e
k

txtxk
exy

1
1

1
)1(

!

)()(
)1()(  

 or, introducing an intermediate function: 

 x
c

k

k
xc

-xe
c exh

k

kc
exh

-x
=

−+
= ∑

=

+

=
)(where

!

))1((
)( 0

0

)1( µ
µ

 

 then 

 )()(where)()()( 001 xhxyxhxhxy ccc =−= −  

 

The partial sums sc = y0+y1+...yc are then the simpler expressions, which occur due to 

telescoping/cancelling of consecutive terms - to be just the function hc(x): 

 ∑
−+=

=

+ −+=
c

kct
k

txk
kxc

c
k

etx
exs

1
1

)1(

!

)(
)1()(  

 or 

(2.2.3) ∑
−+=

=

−
=

c

kct
k

txk

c
k

etx
xs

1
0 !

)(
)(  

and for instance, the partial sum s4 (up to column 4) is 

 
!4

)1(

!3

)2(

!2

)3(
)4()(

42332
45

4

xxx
xx exexex

exexs +−+−=  

It is not obvious for which x the )(lim xsc
c ∞→

 is finite (actually this is in the range -

oo<x<1), but each partial sum in the Eulerian transformation alone is for all x finite 

and thus well defined. 

                                                 
4
 see appendix for a more explicte description 
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In the earlier treatize [Eulerian2007] I've investigated the behaviour for the range 

of summability; here is a picture, how the partial sums behave for some selected x: 

 

The picture shows the partial sums 

 sx,n = yx,0 + yx,1 + yx,2 + ... + yx,n  

    of the Eulerian trans-

formation of the geometric series for some x<1. We see, that 

for 0<x<1 the sequence of partial sums increases monotoni-

cally but is bounded by its value 1/(1-x) (see brown and green 

curve for x=0.9 and x=0.1). Then x=-1 gives also a seemingly 

monotonically increasing curve and even for the divergent 

case t = -15 the curve of the partial sums behaves nicely and 

approaches its expected value with some diminuishing oscilla-

tion first time at the partial sum with 12 terms. 

 

2.3. Additional numerically heuristics 

The initial eye-opener for this all was the sheer empirically/numerically observa-

tion of the remarkable values in the Y(x) vector for some small x. 

The table V(x)∙E = Y(x) for a couple of x, where the convergent case x=1/2 is also 

shown for the larger picture: 

x y(x)0 y(x)1 y(x)2 y(x)3 y(x)4 y(x)5 y(x)6 

1/2 1.64872 0.245200 0.0755762 0.0218176 0.006213 0.00177 0.00050 

1 2.71828 1.95249 1.99579 2.00004 2.00006 2.00001 2.00000 

3/2 4.48169 8.88131 21.4394 51.4132 123.238 295.400 708.074 

2 7.38906 32.4310 159.994 787.504 3875.75 19074.7 93877.1 

5/2 12.1825 105.774 986.090 9185.54 85562.1 797000. 7.42395E6 

3 20.0855 323.087 5429.72 91225.5 1.53268E6 2.57506E7 4.32636E8 

 

For the value x=1 we get terms in Y(1), which seem to converge to 2 plus a (di-

minuishing) error - thus Y(1) ∙'U would again include the divergent series 1+1+1+... . 
And this surprising observation even extends to a relatively reliable pattern, when 

we look generally at the quotients between consecutive yk(x) in each row: 

x y(x)0 q(x)1 q(x)2 q(x)3 q(x)4 q(x)5 q(x)6 q(x)7 

1/2 1.64872 0.148721 0.308223 0.288684 0.284792 0.284536 0.284639 0.284669 

1 2.71828 0.718282 1.02218 1.00213 1.00001 0.999974 0.999997 1.00000 

3/2 4.48169 1.98169 2.41399 2.39807 2.39701 2.39699 2.39700 2.39700 

2 7.38906 4.38906 4.93338 4.92208 4.92156 4.92155 4.92155 4.92155 

5/2 12.1825 8.68249 9.32257 9.31511 9.31487 9.31487 9.31487 9.31487 

3 20.0855 16.0855 16.8058 16.8011 16.8010 16.8010 16.8010 16.8010 

 

2.3.1. We get geometric series with another quotient qx 

This means: we have got terms approximately of another geometric series, or more 

precisely: we have to do with geometric series plus series of quickly vanishing re-

sidual/error terms.  

This is a much interesting behave, completely unexpected in view of the complicated 

analytical expression of polynomials in ex for the partial sums: 

• for 0 < x <1 as well as for the non-summable cases 1 ≤ x < +oo the entries of the 

Eulerian-transform vector Y(x) seem to form themselves geometric series with 

some other quotient, say "qx" (which of course depends on x), scaled by some co-

factor "ax" (also depending on x) , plus ... 

• ... we find a residual vector R(x) whose entries diminuish rapidly and seem to 

have a finite sum even in the non-summable cases; so we may call it indeed a 
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"residual" (or: "error-term") and we'll look specifically at their values or their 

sum ρx ("rho(x)").   

We'll write thus the following much plausible composition (based on numerically 

much accurate computations): 

  V(x) ∙ E = Y(x) 
2.3.1     Y(x) = ax V( qx ) + R(x)   // a,q depending on x 

 

 

For 1 <= x < oo (which define the divergent cases of the geometric series and which 

are the interesting cases here) we have with the observation, that the limit limc->oo  
yc(x) / yc-1(x) = qx approximates a constant dependend on x, the following expres-

sions (suggested by numerical results): 

2.3.2  qx = 
)( xexW

x
−⋅−−

−
   and its inverse relation  xq = 

1

)log(

−x

xx

q

qq
   

It should be mentioned as interesting feature, that for x in this range, the Lambert-

W-function does not simply give back the value of -x here, at least not when we ask 

for the principal branch W0()  (we would get -x if we used W-1() instead, according to 

Mathematica at www.Wolframalpha.com ). 

A meaningful scaling factor ax can be found by the formula: 

2.3.3  ax = 
)log()1(

)1( 2

xx

x

qq

q

−−
−

  for x=q=1 it is possible to do this using the limit 

Using this formula it seems, that the sequence of residual terms converges to zero 

and gives a (rapidly) converging series. 

 

For 0<x<1 the equation eq 2.3.2 using the principal branch of the Lambert-W-
function (denoted as W0()) gives only the constant value qx = 1 - but we can use the 

second real branch, in Mathematica denoted as W-1() . If we do not have access to W-

1() we must do the approximation 

2.3.4 qx = limc->oo  yc(x) / yc-1(x)    (column index c ~ 20 suffices for,  
      say, 12 digits precision) 

   numerically to any desired precision. 

 

 

The residual/error vector R(x) 

Defining the residual-vector R(x) using (2.3.2) or (2.3.4) and (2.3.3)  

2.3.5  R(x) = Y(x) - ax∙V(qx) 

we find first empirically the impressive diminuishing of residuals rx,c : 

x rx,0 rx,1 rx,2 rx,3 rx,4 rx,5 rx,6 rx,7 

1/2 0.703054 -0.0240013 -0.0010568 2.6727E-06 3.4646E-06 1.679E-07 -4.1005E-09 -8.3133E-10 

1 0.718282 -0.0475076 -0.0042086 3.8851E-05 5.7579E-05 5.0728E-06 -3.5986E-07 -1.111E-07 

3/2 0.748569 -0.0669708 -0.0096113 -4.8693E-05 0.00026763 4.1908E-05 -2.5978E-06 -1.7979E-06 

2 0.782935 -0.0813966 -0.0171461 -0.000709 0.0007086 0.0001902 -1.1486E-06 -1.1477E-05 

5/2 0.817358 -0.0903157 -0.0261955 -0.002534 0.0012894 0.0005815 4.7862E-05 -3.9362E-05 

3 0.84977 -0.0937834 -0.0357236 -0.005993 0.0016615 0.0013203 0.00026287 -7.499E-05 

 

and get by ρx = R(x) ∙ 'U  well converging sums-of-residuals  for all x>0 (this includes 

also the non-summable cases of the geometric series where x>1, q>x>1) .  
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Indeed we find empirically that that sum fits the expected geometric-series equa-

tion: 

2.3.6  ρx  = R(x)∙'U 

  empirically=expected  
x

x

q

a

x −
−

− 11

1
= 

)1/()log(1

1

1

1

xx qqx −−
−

−
 

such that finally, according to the hypothesis (based on the empirical observation), 

we can extend the range of summability due to the possible analytic continuation of 

the divergent series with quotient qx to the rational expression 1/(1-qx) (except 

when x=q=1) 

2.3.7  s(x) = limc->oo sc(x) = 1/(1-x) = ax/(1-qx) + ρx 

to apparently arbitrary precision. 

Here follows a table for the difficult cases in the near of x=1 where the geometric 

series as well as the series Y(x) ∙ 'U change from convergence to divergence and we 

see, that (2.3.7) holds empirically.  

We define different values of  x=1 ± eps , where eps aproximates zero; the conver-

gent cases are marked green and the divergent cases are marked orange. For the 

exact value of qx we might select the appropriate branch of the Lambert-W in for-

mula (2.3.2)) : 

x=1±2k qx by ratio of columns  qx by LambertW0
 qx by LambertW-1

 ax ρx ax/(1-qx)+ρx  

= 1/(1-x) 

1-2-1= 0.284668137041 1 0.284668137041 0.945666776835 0.678002720411 2 

1-2-2= 0.576834004142 1 0.576834004142 1.40961009463 0.668895638054 4 

1-2-3= 0.769993632100 1 0.769993632100 1.68659712899 0.667172024896 8 

1-2-4= 0.880101616339 1 0.880101616339 1.83842740033 0.666787456187 16 

1-2-5= 0.938788632410 1 0.938788632410 1.91795437558 0.666696218458 32 

1= 1. 1. 1. 2. 0.666666666667 ->inf 

1+2-5= 1.06381576032 1.06381576032 1 2.08464997945 0.666695012174 -32 

1+2-4= 1.13031866790 1.13031866790 1 2.17199227979 0.666777790260 -16 

1+2-3= 1.27173094812 1.27173094812 1 2.35511772204 0.667094191416 -8 

1+2-2= 1.59076137589 1.59076137589 1 2.75782540401 0.668256112480 -4 

1+2-1= 2.39699882630 2.39699882630 1 3.73312032168 0.672242990758 -2 

1+20= 4.92155363457 4.92155363457 1 6.60612090601 0.684567271446 -1 

 

Summary so far: 

• divergent cases: If x≥1 the resulting qx are also positive and even qx ≥ x ;  qx (and 

then ax) can be evaluated by equation (2.3.2) ; if x=1, then q=1 and -

interestingly- ax and ρx can still be described by the exact formulae (2.3.3) and 

(2.3.4) to a = 2,  ρ = 2/3 .  

• convergent cases: If 0<x<1 then formula (2.3.2) is no more of use because the 

LambertW-expression evaluates then to -1 and the result for qx is then useless. 

In this cases we must approximate qx by the evaluation of the quotients of two 

consecutive entries in Y(x), which is well approximated by column-numbers 

smaller than, say , c=20. 

• alternating geometric series: If x is negative, then the entries in Y(x) are no 

more approximate terms of a geometric progression but instead terms of a rap-

idly diminuishing series with alternating or even chaotic sign. 
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Something more about the quotient qx, the LambertW-function and another asymptotic series-expression for 

qx 

The inconsistency of the LambertW-expression, as for instance defined in the soft-

ware Mathematica, is shown by the graph for qx = -x/W(-x∙e-x) (taken by the public 

version of WolframAlpha), where we see the knee and the slope changing to con-

stant zero when x<1: 

 

 

 

 

 

 

 

 

 

 

 

A closer look at the characteristic of the quotient qx when taken as limit of quotient 

of consecutive terms q(x) = limn->oo  yn/yn-1 in comparision to the description using 

the LambertW might give some more insight.  

If we understand yn(x) at x=1 as polynomial in e as given in (2.2.2) then the polyno-

mial long division of the two concecutive entries in Y(1) gives a series in e, with its 

leading coefficients: 

2.3.8 )1(lim n
n

q
∞→

 = 1e - 1 - 1/2! e-1 - 22/3! e-2 - 33/4! e-3 - 44/5! e-4 - 55/6! e-5  - ... 

This indicates a fairly obvious pattern in the leading coefficients; and when n in-

creases then always the first n coefficients of the quotient's series in e follow exactly 

that pattern and the remaining coefficients deviate from that pattern by small re-

siduals r(1) 
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     by polynomial long division 

 where the rn,k(1)-terms are slightly different from that scheme and are also 

depending on the selection of n. 

The obvious assumption for the limit is then the series without the residuals-

expression 

2.3.9  ∑
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To check convergence of this series we introduce Stirling's approximation-formula 

for the Gamma-function 

2.3.9a   

n

e

n
nn 







π2~!  

 

 

 

qx = -x/W(-x·e-x)  
(graph by Mathematica at WolframAlpha 

plot -x/Productlog(-x exp(-x))   ) 

qx 
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 and rearrange to get:   

2.3.9b 
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This shows that the inner terms in the sum decrease sufficiently fast, such that the 

series converges. We get for the order of decrease of the terms approximately 
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and this converges because the resulting terms are all smaller than 1/k1.5 and we 

know that ζ(s) with s = 1.5 (> 1) converges. 

We find even more: the formula can apparently be generalized for the indeterminate 

argument x: 

2.3.11  ∑
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which, for x>1 is (by the above argument) even more rapidly convergent than the 

series for x=1. 

 

 

2.4. Conclusion 

The geometric series at positive arguments x≥1 cannot be summed by the Eulerian 

summation, because the resulting Eulerian transform of it involves again a geomet-

ric series with an even higher (positive) quotient qx≥x , making Y(x)∙'U divergent.  

However, we might say, that that resulting geometric series, in combination with its 

analytical continuation, and the residual-series together reproduce the cor-

rect/expected value of the geometric series, and only the case for x=1 remains with 

an unremovable singularity and an additional residue with the (so far unexplained) 

value of 2/3. 
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3. Dirichlet-(Zeta) series: Eulerian transformation (for non-summable cases) 

3.1. Intro 

In this chapter we look at the Dirichlet-(zeta-)-type series5, so we look at the Eule-

rian transform (and possibly -sum) of the series ζ(m)= 1/1m + 1/2m +1/3m + ... for 

integer m<=1 (thus for the divergent cases again) but which we shall call now τm 

("tau(m)") to avoid confusion between the ζ(m)-values and our experimental 

evaluations. 

The basic formula is 

3.1.1 Z(m) ∙ E = Y(m)  

  where we also note, that for the convergent cases m>1  

   Z(m) ∙ 'U = ζ(m) 

 and denote the Eulerian transformation by 

3.1.2 Z(m) ∙ E = Y(m)  and   
             Y(m) ∙ 'U = τm  

 and expect -at least for the convergent cases- that 

 ζ(m) = τm 

For the convergent cases m>1 this seems to hold by all done numerical checks, but 

for the divergent cases we get some systematic error and this current chapter is 

devoted to study that error and properties of τm. 

A quick numerical check for some m<=1 (which are the divergent cases) give the 

following entries in the resulting Y(m)-vectors: 

Y [0] [1] [2] [3] [4] [5] [6] ... 

Y(1) 1.7182818 0.47624622 0.33193046 0.25000971 0.20001152 0.16666751 0.14285709 ... 

Y(0) 2.7182818 1.9524924 1.9957914 2.0000389 2.0000576 2.0000051 1.9999996 ... 

Y(-1) 5.4365637 8.5757592 12.653940 16.666760 20.666950 24.666698 28.666664 ... 

Y(-2) 13.591409 40.505390 84.627779 144.66648 220.66803 312.66686 420.66665 ... 

 

Surely we get more than a vague impression of the kind of the resulting Y-vectors - 

and by that of the deviations from the corresponding (and expected) τ(m)-values. 

 

                                                 
5
 In recent discussions it appeared to me, that I should possibly replace the complete reference to Dirichlet-/Zeta series by that 

to Polylogs. But I've not yet a decisive answer for this. 



 Properties of "Eulerian transformation" of divergent geometric- and Dirichlet series S. -14- 

Divergent Summation  Mathematical Miniatures 

3.2. Analytic description of the entries in the Eulerian transform Y(x) 

Of course, there are as in chap. 2 not too difficult analytical expressions for the en-

tries in Y(x).  

a)   For Y(0) we have the same case as in chap. 2 with the transforms of the geomet-

ric series with x=1. We get by the explicite decomposition6 of the columns in the 

Eulerian matrix: 

3.2.1: Composition of entries of  Y(m) as polynomials in e 

Y [0] [1] [2] [3] [4] 

Y(1) -1   

 +1∙e 

-1/2 

 -10∙e+2-1∙e2 

-1/3 

+11∙e/2! -      20∙e2+ 3-1∙e3 

-1/4 

 -12∙e/3!+        21∙e2/2!-     30∙e3+    4-1∙e4 

... 

Y(0) 1∙e -2∙e+    1∙e2 +3∙e/2!-       3∙e2+    1∙e3   -4∙e/3!+        8∙e2/2!-        4∙e3+      1∙e4   ... 

Y(-1) 2∙e -5∙e+    3∙e2 +10∙e/2!-     11∙e2+    4∙e3 -17∙e/3!+     36∙e2/2!-      19∙e3+      5∙e4   ... 

Y(-2) 5∙e -15∙e+  11∙e2 +37∙e/2!-     47∙e2+  19∙e3 -77∙e/3!+    180∙e2/2!-   103∙e3+    29∙e4   ... 

Y(-3) 15∙e -52∙e+  47∙e2 +151∙e/2!-   227∙e2+103∙e3 -372∙e/3!+    988∙e2/2!-   622∙e3+  189∙e4   ... 

Y(-4) 52∙e -203∙e+227∙e2 +674∙e/2!- 1215∙e2+622∙e3 -1915∙e/3!+ 5892∙e2/2!- 4117∙e3+1357∙e4   ... 

... ... ... ... ... ... 

 

3.2.1a: The partial sums (horizontally, along a row) in that table are: 

S [0] [1] [2] [3] [4] 

S(1) -1 

+1∙e 

-3/2 

+1/2∙e2-  0∙e  

-11/6 

+1/3∙e3- 1/2∙e2+  1∙e/2! 

-50/24 

+1/4∙e4- 2/3∙e3  +      1∙e2/2!+    2∙e/3! 

 

S(0) 1∙e 1∙e2-  1∙e 1∙e3-     2∙e2+  1∙e/2! 1∙e4-     3∙e3   +      4∙e2/2!-    1∙e/3! ... 

S(-1) 2∙e 3∙e2-  3∙e 4∙e3-     8∙e2+  4∙e/2! 5∙e4-  15∙e3   +    20∙e2/2!-    5∙e/3! ... 

S(-2) 5∙e 11∙e2-10∙e 19∙e3-  36∙e2+17∙e/2! 29∙e4-   84∙e3   + 108∙e2/2!-  77∙e/3! ... 

S(-3) 15∙e 47∙e2-37∙e 103∙e3-180∙e2+77∙e/2! 189∙e4- 622∙e3   + 988∙e2/2!-372∙e/3! ... 

... ... ... ... ... ... 

 

 

b)  Because in table 3.2.1 we can recognize the sequences of coefficients along the 

columns (beginning at row 0 downwards) as Bell-numbers Br,c (where the rowindex 

r is taken from the Y(-m) parameter m) and Stirling numbers 1st kind (marked red) 

we can thus prognose the coefficients of the following rows and columns: 

3.2.2:  Composition of Y(-m) expressed by Bell-numbers (using r=m, m >=0): 

Y [0] [1] [2] [3] [4] 

Y(-m) 1Br,0∙e 1Br,1∙e2  

-(1Br+1,0)/1!∙e1 

1Br,2∙e3 

-(1Br+1,1)/1!∙e2 

+(-1Br+1,0+1Br+2,0)/2!∙e1 

1Br,3∙e4 

-(1Br+1,2)/1!∙e3 

+(-1Br+1,1+1Br+2,1)/2!∙e2 

-(2Br+1,0-3Br+2,0+1Br+3,0)/3!∙e1 

... 

 

and where the generalization for the Bell-numbers to the row-index -1 is taken as  

3.2.2a B-1,c = 1/(1+c)  

   where c is the column-number. 

3.2.2b The "generalized" Bell-matrix B has 
its top-left segment as: 

 
(Infinite size is always assumed!) 

                                                 
6
 into their defining sequences of geometric-series type and their derivatives as shown in [Eulerian2007] 
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Because the Bell-numbers result from the row-sums of the matrix of Stirling num-

bers 2nd kind this can even be coded by that two matrices of Stirling-coefficients 

alone. 

 

 

c)   Another decomposition involves a -perhaps- simpler matrix-expression. 

We use the "Pascalmatrix" P : 

3.2.3 The "Pascal" matrix P has its top-left 
segment as: 

 
(Infinite size is always assumed!) 

 

Combined with the above described (generalized) Bell-matrix B we can find expres-

sions for each complete column by polynomials in e with (matrix-) cofactors of 

powers of P and appropriate columns of B: 

3.2.4: Composition of Y(m) expressed by Pascal- and Bell-matrix 

Y [0] [1] [2] [3] [4] [5] 

Y= e∙ B,0 e∙B,1 - P∙B,0 e2∙B,2 - P∙(e∙B,1 - P∙(B,0)) e3∙B,3 - P∙(e2∙B,2 - P∙(e∙B,1 - P∙(B,0)))   

 

More explicitely this is: 

3.2.4a Y,0 = +                  B,0∙e1  
 Y,1 = - (1∙P)1/1!∙B,0∙e1 +                  B,1∙e2    
 Y,2 = +(1∙P)2/2!∙B,0∙e1 - (2∙P)1/1!∙B,1∙e2 +                 B,2∙e3  
 Y,3 = - (1∙P)3/3!∙B,0∙e1  +(2∙P)2/2!∙B,1∙e2  - (3∙P)/1!∙B,2∙e3  +B,3∙e4   
 ... =  ... 
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For instance, the first terms of the consecutive partial sums S,c are then:  

3.2.5 (in S,0 :)  (I        )∙B,0∙e1  
 (in S,1 :) (I  - (1∙P)1/1!                      )∙B,0∙e1   
 (in S,2 :)  (I  - (1∙P)1/1!  +  (1∙P)2/2!  )∙B,0∙e1   
 (in S,3 :)  (I  - (1∙P)1/1!  +  (1∙P)2/2!  -  (1∙P)3/3! )∙B,0∙e1   
 ...  

  and in general: 
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 *****(The set of Pari/GP-routines shall be displayed in a next edition of this article)***** 
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3.3. Additional descriptions by numerial observations 

3.3.1. Basic observations 

Here is again the beginning of the list of results for the Y-vectors for m=1,0,-1,-2,..-9 

 

Y [0] [1] [2] [3] [4] [5] [6] ... 

Y(1) 1.7182818 0.47624622 0.33193046 0.25000971 0.20001152 0.16666751 0.14285709 ... 

Y(0) 2.7182818 1.9524924 1.9957914 2.0000389 2.0000576 2.0000051 1.9999996 ... 

Y(-1) 5.4365637 8.5757592 12.653940 16.666760 20.666950 24.666698 28.666664 ... 

Y(-2) 13.591409 40.505390 84.627779 144.66648 220.66803 312.66686 420.66665 ... 

Y(-3) 40.774227 205.93498 596.72485 1307.5066 2434.1842 4072.8457 6319.5110 ... 

Y(-4) 141.35066 1125.5045 4431.5618 12298.108 27732.399 54510.600 97176.814 ... 

Y(-5) 551.81121 6593.7700 34613.011 120291.57 326186.63 749418.11 1529346.5 ... 

Y(-6) 2383.9332 41260.335 283855.47 1222538.6 3958934.9 10580273. 24627867. ... 

Y(-7) 11253.687 274721.07 2439791.8 12897622. 49554696. 1.5333751E8 4.0571837E8 ... 

Y(-8) 57483.506 1939081.8 21938662. 1.4110443E8 6.3933029E8 2.2804055E9 6.8357591E9 ... 

Y(-9) 315252.74 14458661. 2.0600574E8 1.5992142E9 8.4962001E9 3.4786334E10 1.1775796E11 ... 

 

We observe in the first rows (when read column-by-column) that the entries ap-

proximate "obvious" values which depend in a simple way on the column-index c.  

For instance in Y(1) they converge to yc ~1/(c+1),  in Y(0) to yc ~ 2, in Y(-1) to yc ~ 
4∙(c+1)+2/3 and so on. (The result for m=0 is the same as in the previous chapter for 

the transformation of the geometric series with x=1). Very obviously we can rewrite 

the first few rows (per column c) as 

3.3.1 Y(  1) c =  R( 1) c + 1∙(c+1)-1  
 Y(  0) c =  R( 0) c +   2    ∙(c+1)0   
 Y(-1) c =  R(-1) c +  2/3∙(c+1)0  +4∙(c+1)1 
 ... 

That rule is suggestive enough to invest some effort to extend that pattern in the 

obvious way and we can actually find a table of coefficients C for lower indexes m as 

well and by which the residuals always diminuish rapidly with increasing column-

indexes c. 

In general, we can indeed express the resulting vectors Y(m) by this ansatz as com-

positions of vectors Z(0) ... Z(m) cofactored by coefficients of the newly created table 

C: 

Let as in 3.1.1 defined  

 Y(m) = Z(m) ∙ E  

be the Eulerian transform of the "zeta"-vector Z(m), then let W(m) denote the part of 

the systematic composition in Y(m): 

3.3.2 W(m) =  cm,0∙Z(0) + cm,1∙Z(-1) +cm,2∙Z(-2) + ... + cm,m∙Z(m)  

with coefficients cm,c according to the table C below and let us then express Y(m) by 

W(m) and a residual R(m) such that 

3.3.2a Y(m) =  W(m) + R(m) 

 

Then the entries of the R(m) form rapidly diminuishing sequences whose sums con-

verges quickly to some (rational) residual value ρm . The empirically observed good 

convergence supports the hypothese about the general type of composition of Y(m). 
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Example decomposition of the vector Y(-3) = Z(-3) ∙ E into component vectors: 

 Z(-3) ∙ E = Y(-3)  
        = R(-3)   + W(-3)  
        = R(-3)   + 38/45∙Z(0) + 20/3∙Z(-1) + 16∙Z(-2) + 16∙Z(-3)    (see this in the table below at C(-3) 

Remember we have already analytical expressions for the compositions in table 

3.2.1, such that for instance the residuals in R(1) are exactly: 

  [e - 2,  e2/2 - e  -2/2,  e3/3 -e2 + e/2!  -2/3, ...]  

  where the terms without e as cofactor are 2∙[1 , 1/2 , 1/3 , 1/4 , ... ]. 

 

3.3.2. The coefficients of the matrix C - heuristically and "most likely" analytically 

The coefficients of the heuristic matrix C can be guessed by approximations of the 

numerical solutions with some reasonable effort for m from m=1 down to, say, m=-7 

. For even higher negative m this becomes too much heavy work and seems unrea-

sonable.  

3.3.2.1 Table C - compiled due to guesses based on "obvious" numerical approximations: 

C -1 0 1 2 3 4 5 6 7 ... 

C(1) 1 0 0 0 0 0 0 0 0 ... 

C(0) 0 2 0 0 0 0 0 0 0 ... 

C(-1) 0 2/3 4 0 0 0 0 0 0 ... 

C(-2) 0 2/3 4 8 0 0 0 0 0 ... 

C(-3) 0 38/45 20/3 16 16 0 0 0 0 ... 

C(-4) 0 34/27 116/9 40 160/3 32 0 0 0 ... 

C(-5) 0 130/63 28 976/9 560/3 160 64 0 0 ... 

C(-6) 0 458/135 596/9 952/3 672 2240/3 448 128 0 ... 

C(-7) 0 1846/405 22244/135 8912/9 22736/9 10304/3 2688 3584/3 256 ... 

... ... ... ... ... ... ... ... ... ... ... 

 ∙ Z(1) ∙ Z(0) ∙ Z(-1) ∙ Z(-2) ∙ Z(-3) ∙ Z(-4) ∙ Z(-5) ∙ Z(-6) ∙ Z(-7) ... 

 

 Note: the indexes of the matrix C are here adapted to match the values m of the transformed Z(m)-vector. 

I did not succeed to find a direct or recursive pattern in the rows or columns of C to 

extend the found initial guesses to arbitrarily wide ranges of m and c.  

 

But by accident7 I found another way which now looks like the most likely analytical 

solution. This resulted initially from an analysis for the convergent cases m>1 

where similarly we can find a composition-table for the resulting Y(m) by a -now 

infinite- composition of the vectors Z(m) for Z(m) .. Z(oo). Let's call this matrix of 

coefficients D.  

Its top left segment begins as follows: 

3.3.2.2    Table D - compiled due to guesses based on "obvious" numerical approximations: 

Coefficients-matrix D for compositions of  

 Y(m) = R(m) + ∑
=

−− ⋅
oo

mk

mk kZD )(1,1  

for m>1  
(Infinite size is always assumed!) 

 

                                                 
7
 The accident was a mail, which I posted in the seqfan-mailing list asking for help for an analytic description for the third 

column in the empirically guessed matrix D. The longtime seqfan-correspondent Paul D. Hanna had the idea that if the second 

column if D has the exponential generating function h(x), (which could then be found to be h(x)=log((exp(x)-1)/x)) the third 

column has h(x)² as its generating function - and this gave immediately the generalization for all other columns in D. 
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This means for example 

 Z(2)∙E = Y(2) =  1/2∙Z(2)  + 1/12∙Z(3)   -  1/120∙Z(5)...   + R(2) 
 Z(3)∙E = Y(3) =              + 1/4 ∙Z(3)    +1/8∙Z(4)+ 1/48  ∙Z(5)...   + R(3) 
 

Interestingly, by the first few guessed coefficients in D, the exponential generating 

function for the second column in D seems to be the function 

3.3.2.3 h(x) = 






 −
x

x 1)exp(
log  

and simply that of the following columns its powers h(x)0, h(x), h(x)2, h(x)3, ... , so 

that I assume with a very strong likelihood, that the Carlemanmatrix8 H of the func-

tion h(x)  and the matrix D are related by the formula: 

3.3.2.4 D = `G ∙ H ∙ `g 

thus 

3.3.2.5         D is a factorially similarity scaling of the Carlemanmatrix H for the func-

tion h(x). 

Now our empirically guessed matrix C seems to be just the inverse of D and so by 

the same strong likelihood 

3.3.2.6 C = D-1  = `G ∙ H-1 ∙ `g 

and the function b(x), for which H-1 is the Carlemanmatrix, is the inverse of h(x), so 

the function b(x) = -(-h)[-1](x) seems to be the exponential generating function for 

the second column of C and for the other columns in C the consecutive powers 

3.3.2.7 [ b(x)0 , b(x) , b(x)2 , b(x)3 , ... ] . 

 

3.3.3. An exponential generating function for the columns of C 

The inverse b(x) = -(-h)[-1](x) can, according to the public available tool at Wolfra-

mAlpha, be expressed as 

3.3.3.1 b(x) = ( )xex eeLambertW
x −−− +−−

−

)( )    

but in the version with public access only it cannot give a power series for this. 

Fortunately we can get the leading terms of the power series by formal series inver-
sion using the software Pari/GP by the following: 

 h(x) = log(-x/(exp(-x)-1)) 

 gives    = 1/2 x - 1/24 x2 + 1/2880 x4 - 1/181440 x6 + O(x8) 
 which is    = -ζ(0)/1! x + ζ(-1)/2! x2 + ζ(-3)/4! x4 + ζ(-5)/6! x6 + O(x8) 

 b(x) = -serreverse(-h(x))§  \\ = h[-1](x)  

 gives    = 2 x + 2/3 x2/2! + 2/3 x3/3! + 38/45 x4/4! + 34/27 x5/5! +O(x6) 

which matches perfectly the guesses from the heuristics in the relevant Y(m) writ-

ten into the second column of the matrix C. 

 

                                                 
8
 see [WP:Carlemanmatrix] the page about Carlemanmatrices. Note that I use the Carleman-matrices in the transposed form 

here. 

§
 notation for a function-call in the software Pari/GP 
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3.3.4. The entries in the compositions W(m) and in the residuals R(m) 

If we write the vectorial compositions W(m) as  

3.3.4.1 W(m) = Y(m) - R(m) 

by which W(m) denotes the systematic part in Y(m) then the individual columns in 

W(m)  look like 

3.3.4.2 Table W as "systematic" part in Y (based on compositions by matrix C) 

W\k 0 [1] [2] [3] [4] [5]  k 

W(1) 1 1/2 1/3 1/4 1/5 1/6  1/(1+k) 

W(0) 2 2 2 2 2 2  2 

W(-1) 4+2/3 8+2/3 12+2/3 16+2/3 20+2/3 24+2/3  2/3+4∙(1+k) 

W(-2) 8+4+2/3 32+8+2/3 72+12+2/3 128+16+2/3 200+20+2/3 288+24+2/3  2/3+4∙(1+k)+8∙(1+k)2  

W(-3) 1778/45 9278/45 26858/45 58838/45 109538/45 183278/45   

W(-4) 3766/27 30394/27 119662/27 332050/27 748774/27 1471786/27   

W(-5) 34598/63 415370/63 2180686/63 7578386/63 20549750/63 47213338/63   

W(-6) 321518/135 5569538/135 38320838/135 165042938/135 534456158/135 1428336818/135   

... ... ... ... ... ... ...  ... 

 

Finally, the residuals in the vectors R(m) (columnwise and at the right margin their 

sum) look numerically like 

3.3.4.3 Table R as "residual" part  Y-W , and rowsums ρm: 

R [0] [1] [2] [3] [4] [5] ... ∑(R)=ρm 

R(1) 0.71828183 -0.023753779 -0.0014028770 0.0000097126192 0.000011515718 0.00000084545928  log(2) 

R(0) 0.71828183 -0.047507558 -0.0042086309 0.000038850477 0.000057578590 0.0000050727557  2/3 

R(-1) 0.76989699 -0.090907512 -0.012726920 0.000093225273 0.00028329490 0.000030911246  2/3 

R(-2) 0.92474248 -0.16127701 -0.038887949 -0.00018668861 0.0013658960 0.00019163872  98/135 

R(-3) 1.2631163 -0.24279621 -0.11959776 -0.0044815623 0.0064000543 0.0012076617  122/135 

R(-4) 1.8691736 -0.19918042 -0.36414371 -0.039748735 0.028658228 0.0077033125  82/63 

R(-5) 2.6366080 0.59539347 -1.0528713 -0.27565729 0.11821945 0.049355040  5858/2835 

R(-6) 2.3183487 4.4978882 -2.5873734 -1.6754118 0.40691276 0.31398533  1318/405 

...         
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3.4. Conclusion and a speculation about some "magic" coefficients 

By the above discussion we find that we cannot correctly Eulerian-sum the zeta-

series at arguments m<=1 . 

However, the surprising observation, that, for instance in the first three transforma-

tions, 

3.4.1a Z(  1) ∙ E = R(1)     +   1    Z(1)  
3.4.1b Z(  0) ∙ E = R(0)       +   2    Z(0)  
3.4.1c Z(-1) ∙ E = R(-1)      + 2/3 Z(0)  + 4 Z(-1)  

the same vector Z(m) occurs at the left as well as on the right hand of the transfor-

mation but with different multiplicities might introduce some speculation about 

possibly meaningful insertion of finite values for the occuring infinite expres-

sions/sums. 

If -for instance for m=0- we assume some meaningful finite replacement value τ(0) 

for the infinite expression Z(0)∙ 'U, being equally valid on both sides of the equation 

and demand equality in:  

3.4.2 Z(0)∙'U = R(0)∙'U + 2∙Z(0)∙'U 

then we see, that besides the obvious solution by an "infinity" in τ(0)=Z(0)∙'U there 

is also one possible solution in a finite value because ρ(0) (for R(0)∙'U) has a well 

defined value ρ(0)=2/3 . 

Thus we might rearrange in the rhs and lhs the assumed sums 

 τ(0) = ρ(0) + 2 τ(0)  
 τ(0) = ρ(0)/(1-2) = -ρ(0)  

 to arrive at 

3.4.2a τ(0)= -2/3 

Similarly, if we assume some meaningful finite value τ(-1) for Z(-1)∙'U (while again 

ρ(-1) for R(-1)∙'U has a well defined value ρ(-1)=2/3) then we get, beginning  from: 

 τ(-1)  = ρ(-1) + 2/3 τ(0) + 4 τ(-1) 
 -3 τ(-1)  = (ρ(-1) + 2/3 τ(0))  
   = 2/3 - 4/9  

  by rearranging: 

3.4.2b τ(-1) =  -2/27 

The table for the first few possible finite τ()-function - assignments comes out to be: 

3.4.3c τ(  0)  = -2/3     =                -2/3   / (2-1) 
 τ(-1)  = -2/27   =                -2/3   /3 /(2-1)(4-1) 
 τ(-2)  = 2/945      =                 2/5 /32  /(2-1)(4-1)(8-1) 
 τ(-3)  = 338/42525   =            338/5 /33 /(2-1)(4-1)(8-1)(16-1) 
 τ(-4)  = -58/112995        =           -406 /34 /(2-1)(4-1)(8-1)(16-1)(32-1) 
 τ(-5)  = -27982/7118685  =    -587622 /35 /(2-1)... (64-1) 
 τ(-6)  = 224594/645766425    =99045954/5 /35 /(2-1)... (128-1) 

However, for τ(1) we get by 

3.4.3d τ(1) = ρ(1) + τ(1)  where   ρ(1) = log(2) 

that there is no possible finite insertion and thus we observe a remaining singularity 

with some "residue"(?) of log(2). 

However, I don't know yet whether these finite values might have any sensi-

cal/meaningful interpretation in any other context. 
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4. Appendix 

Expansions in the entries in Y(x) = [y0 , y1 , y2 , ...] of the "Eulerian transform"  V(x)∙E 
=Y(x) of the geometric series V(x)∙'U = f(x) = 1 + x + x2 + x3+ ... . The entries in the nu-

merators of the sums are defined by the explicite representation of the entries in the 

Eulerian triangle (see: [NIST:Eulerian] or [Eulerian2007]): 

 

...

!2

)1(

!1

)2(

!0

1
0

!3

)1(

!2

)2(

!1

)3(

!0

1

!3
)31()1(

!2
)22(2)13(

!

)1(
3

1
)2(

2

1
)3(

1

1
)4(

)(

!1

)1(

!0

1
0

!2

)1(

!1

)2(

!0

1

!2
)21(1)12(

!

)1(
2

1
)2(

1

1
)3(

)(

!0

1
0

!1

)1(

!0

1

)11(

!

)1(
1

1
)2(

)(

!

)1(
)(

1
2

231
3

2
2

3
1

4

1
2

2
34

inf

0

3

121
2

2
1

3

1
23

inf

0

2

11
1

2

12

inf

0

1

1

inf

0

0









−+−+








−+−=

+−+++−=








 +
−







 +
+







 +
−

=








 +−+







+−=

+++−=








 +
+







 +
−

=








 −+







−=

+−=








 +
−

=

=

=

∑

∑

∑

∑

=

=

=

=

xxxxxxx

xx
xx

k

kkkk

xxxxx

x
xx

k

kkk

xxx

xx

k

kk

x

k

k

e
x

e
x

ee
x

e
x

e
x

e

e
xx

e
xxexe

k

x
k

x
k

x
k

x

xy

e
x

ee
x

e
x

e

e
xxexe

k

x
k

x
k

x

xy

ee
x

e

exe

k

x
k

x

xy

e

k

x
xy

 

The partial sums of the above 

 

( )

K









++++=









+++=









++=









+=

=

−

−

−

−

−=

−=

−=

−=

!4

)1(

!3

)2(

!2

)3(

!1

)4(
1)(

!3

)1(

!2

)2(

!1

)3(
1)(

!2

)1(

!1

)2(
1)(

!1

)1(
1)(

1)(

4321
5

4

321
4

3

21
3

2

1
2

1

1

0

yyyy
exs

yyy
exs

yy
exs

y
exs

exs

x

xey

x

xey

x

xey

x

xey

x

x

x

x

x

 

 



 Properties of "Eulerian transformation" of divergent geometric- and Dirichlet series S. -22- 

Divergent Summation  Mathematical Miniatures 

 Computation of the column-values for the ZETA-summation 
 

 gb[r,c]= 1

0

, )1(2 −

=

+⋅∑ k
c

k

kr cs   - matrix-indexes beginning at zero 

\\ Computation of the column-values for the EU(lerian) summation of ZETA-vectors 

   n=32 \\ standard size of matrices and vectors 

   \\ install set of extended Bell-numbers as constants in a matrix "GenBell" 

   GenBell = S2 * matrix(n,n,r,c,c^(r-2)) ;\\ GenBell = S2*ZV~ * dZ(1) ; 

GB(r,c)=GenBell[1+r,1+c]  \\ install a functional call into Bell numbers 

 

\\ analytic computation of Z(m)*E = Y(m) 

{EU_zeta_Y(m,dim=8,e='e) = local(res,tmp,Pm,Gm,m1); 

 m=1-m;m1=m+1; 

 res=vector(dim);  

 Pm = vector(1+m,c,binomial(m,c-1));  \\ Pm=PPow(1,m+1)[1+m,]; 

 Gm=VE(GenBell,1+m,dim); 

 

 \\ initialize result "res"     \\  

 for(c=1,dim, res[c]=GB(m,c-1)*e^c);  \\ res = Gm[1+m,] *e *dV(e,dim) 

 for(p=1,dim, 

      tmp= vector(m1,c,p^(m1-c)*Pm[c]) ; 

   tmp = tmp * Gm;      

      tmp= vector(dim,c,tmp[c]*c^p); \\ tmp= PPow(p,m1) *Gm *dZ(-p,dim); 

   for(k=p+1,dim,res[k] += (-1)^p*tmp[k-p]/p!*e^(k-p)); 

   ); 

 return(res);} 

\\ ============================================================================ 

 

\\ test for m=-3 

 

EU_zeta_Y(-3,4) 

\\  [15*e,  

     47*e^2 - 52*e,  

     103*e^3 - 227*e^2 + 151/2*e, 

     189*e^4 - 622*e^3 + 494*e^2 - 62*e   

    ] 

 

\\ ================== 
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