Asymptotic factorizations of an Eulerproduct into primefactors.
Let : : where the q are prime. We are considering limN->oo wN,s (mod pk) where the pk are primes and here pk=2...89
and estimate the relative frequency of primefactors pk after evaluating the euler-product wN,s with exponent s up to the Nth prime.
Tables: absolute and (scaled) relative count of occurences of primefactor pk in relation to N, formula: rel=(count/N) * (pk-1)²
N=200 |
Count of occurences of primefactor p in the (partial) Eulerproduct over prime(1)...prime(200) |
|
|||||||||||||||||||||||
s\p |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
61 |
67 |
71 |
73 |
79 |
83 |
89 |
|
1 |
392 |
142 |
61 |
35 |
20 |
17 |
12 |
9 |
10 |
6 |
4 |
3 |
3 |
4 |
5 |
3 |
4 |
3 |
1 |
2 |
3 |
1 |
4 |
2 |
|
2 |
784 |
294 |
114 |
71 |
40 |
35 |
23 |
20 |
17 |
12 |
11 |
8 |
7 |
10 |
9 |
6 |
6 |
6 |
3 |
4 |
4 |
4 |
6 |
2 |
|
3 |
392 |
238 |
61 |
107 |
20 |
50 |
12 |
35 |
10 |
6 |
18 |
14 |
3 |
12 |
5 |
3 |
4 |
7 |
8 |
2 |
10 |
5 |
4 |
2 |
|
4 |
983 |
294 |
245 |
71 |
40 |
75 |
48 |
20 |
17 |
27 |
11 |
18 |
16 |
10 |
9 |
13 |
6 |
13 |
3 |
4 |
8 |
4 |
6 |
6 |
|
5 |
392 |
142 |
110 |
35 |
107 |
17 |
12 |
9 |
10 |
6 |
32 |
3 |
21 |
4 |
5 |
3 |
4 |
14 |
1 |
14 |
3 |
1 |
4 |
2 |
|
6 |
784 |
493 |
114 |
224 |
40 |
104 |
23 |
69 |
17 |
12 |
40 |
28 |
7 |
28 |
9 |
6 |
6 |
17 |
15 |
4 |
18 |
13 |
6 |
2 |
|
7 |
392 |
142 |
61 |
67 |
20 |
17 |
12 |
9 |
10 |
54 |
4 |
3 |
3 |
31 |
5 |
3 |
4 |
3 |
1 |
18 |
3 |
1 |
4 |
2 |
|
8 |
1182 |
294 |
245 |
71 |
40 |
75 |
99 |
20 |
17 |
27 |
11 |
18 |
38 |
10 |
9 |
13 |
6 |
13 |
3 |
4 |
16 |
4 |
6 |
15 |
|
9 |
392 |
334 |
61 |
107 |
20 |
50 |
12 |
105 |
10 |
6 |
18 |
52 |
3 |
12 |
5 |
3 |
4 |
7 |
8 |
2 |
24 |
5 |
4 |
2 |
|
10 |
784 |
294 |
208 |
71 |
217 |
35 |
23 |
20 |
17 |
12 |
69 |
8 |
50 |
10 |
9 |
6 |
6 |
33 |
3 |
28 |
4 |
4 |
6 |
2 |
|
11 |
392 |
142 |
61 |
35 |
39 |
17 |
12 |
9 |
98 |
6 |
4 |
3 |
3 |
4 |
5 |
3 |
4 |
3 |
36 |
2 |
3 |
1 |
4 |
24 |
|
12 |
983 |
493 |
245 |
224 |
40 |
216 |
48 |
69 |
17 |
27 |
40 |
61 |
16 |
28 |
9 |
13 |
6 |
37 |
15 |
4 |
34 |
13 |
6 |
6 |
|
|
relative frequency: count/N*(pk - 1)² |
|
|
||||||||||||||||||||||
1 |
1.96 |
2.84 |
4.88 |
6.30 |
10.00 |
12.24 |
15.36 |
14.58 |
24.20 |
23.52 |
18.00 |
19.44 |
24.00 |
35.28 |
52.90 |
40.56 |
67.28 |
54.00 |
21.78 |
49.00 |
77.76 |
30.42 |
134.48 |
77.44 |
|
2 |
3.92 |
5.88 |
9.12 |
12.78 |
20.00 |
25.20 |
29.44 |
32.40 |
41.14 |
47.04 |
49.50 |
51.84 |
56.00 |
88.20 |
95.22 |
81.12 |
100.92 |
108.00 |
65.34 |
98.00 |
103.68 |
121.68 |
201.72 |
77.44 |
|
3 |
1.96 |
4.76 |
4.88 |
19.26 |
10.00 |
36.00 |
15.36 |
56.70 |
24.20 |
23.52 |
81.00 |
90.72 |
24.00 |
105.84 |
52.90 |
40.56 |
67.28 |
126.00 |
174.24 |
49.00 |
259.20 |
152.10 |
134.48 |
77.44 |
|
4 |
4.92 |
5.88 |
19.60 |
12.78 |
20.00 |
54.00 |
61.44 |
32.40 |
41.14 |
105.84 |
49.50 |
116.64 |
128.00 |
88.20 |
95.22 |
175.76 |
100.92 |
234.00 |
65.34 |
98.00 |
207.36 |
121.68 |
201.72 |
232.32 |
|
5 |
1.96 |
2.84 |
8.80 |
6.30 |
53.50 |
12.24 |
15.36 |
14.58 |
24.20 |
23.52 |
144.00 |
19.44 |
168.00 |
35.28 |
52.90 |
40.56 |
67.28 |
252.00 |
21.78 |
343.00 |
77.76 |
30.42 |
134.48 |
77.44 |
|
6 |
3.92 |
9.86 |
9.12 |
40.32 |
20.00 |
74.88 |
29.44 |
111.78 |
41.14 |
47.04 |
180.00 |
181.44 |
56.00 |
246.96 |
95.22 |
81.12 |
100.92 |
306.00 |
326.70 |
98.00 |
466.56 |
395.46 |
201.72 |
77.44 |
|
7 |
1.96 |
2.84 |
4.88 |
12.06 |
10.00 |
12.24 |
15.36 |
14.58 |
24.20 |
211.68 |
18.00 |
19.44 |
24.00 |
273.42 |
52.90 |
40.56 |
67.28 |
54.00 |
21.78 |
441.00 |
77.76 |
30.42 |
134.48 |
77.44 |
|
8 |
5.91 |
5.88 |
19.60 |
12.78 |
20.00 |
54.00 |
126.72 |
32.40 |
41.14 |
105.84 |
49.50 |
116.64 |
304.00 |
88.20 |
95.22 |
175.76 |
100.92 |
234.00 |
65.34 |
98.00 |
414.72 |
121.68 |
201.72 |
580.80 |
|
9 |
1.96 |
6.68 |
4.88 |
19.26 |
10.00 |
36.00 |
15.36 |
170.10 |
24.20 |
23.52 |
81.00 |
336.96 |
24.00 |
105.84 |
52.90 |
40.56 |
67.28 |
126.00 |
174.24 |
49.00 |
622.08 |
152.10 |
134.48 |
77.44 |
|
10 |
3.92 |
5.88 |
16.64 |
12.78 |
108.50 |
25.20 |
29.44 |
32.40 |
41.14 |
47.04 |
310.50 |
51.84 |
400.00 |
88.20 |
95.22 |
81.12 |
100.92 |
594.00 |
65.34 |
686.00 |
103.68 |
121.68 |
201.72 |
77.44 |
|
11 |
1.96 |
2.84 |
4.88 |
6.30 |
19.50 |
12.24 |
15.36 |
14.58 |
237.16 |
23.52 |
18.00 |
19.44 |
24.00 |
35.28 |
52.90 |
40.56 |
67.28 |
54.00 |
784.08 |
49.00 |
77.76 |
30.42 |
134.48 |
929.28 |
|
12 |
4.92 |
9.86 |
19.60 |
40.32 |
20.00 |
155.52 |
61.44 |
111.78 |
41.14 |
105.84 |
180.00 |
395.28 |
128.00 |
246.96 |
95.22 |
175.76 |
100.92 |
666.00 |
326.70 |
98.00 |
881.28 |
395.46 |
201.72 |
232.32 |
|
|
|||||||||||||||||||||||||
|
113 |
N=1000 |
Count of occurences of primefactor p in the (partial) Eulerproduct over prime(1)...prime(1000) |
|
|||||||||||||||||||||||
s\p |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
61 |
67 |
71 |
73 |
79 |
83 |
89 |
|
1 |
1961 |
736 |
307 |
191 |
110 |
85 |
65 |
50 |
48 |
33 |
31 |
28 |
24 |
24 |
23 |
17 |
19 |
17 |
18 |
13 |
14 |
13 |
11 |
12 |
|
2 |
3952 |
1494 |
613 |
385 |
219 |
173 |
129 |
110 |
96 |
68 |
67 |
54 |
48 |
48 |
44 |
36 |
35 |
30 |
34 |
27 |
24 |
25 |
21 |
21 |
|
3 |
1961 |
1226 |
307 |
573 |
110 |
261 |
65 |
175 |
48 |
33 |
103 |
88 |
24 |
73 |
23 |
17 |
19 |
54 |
50 |
13 |
42 |
40 |
11 |
12 |
|
4 |
4951 |
1494 |
1253 |
385 |
219 |
356 |
265 |
110 |
96 |
144 |
67 |
107 |
97 |
48 |
44 |
74 |
35 |
65 |
34 |
27 |
49 |
25 |
21 |
45 |
|
5 |
1961 |
736 |
552 |
191 |
545 |
85 |
65 |
50 |
48 |
33 |
176 |
28 |
124 |
24 |
23 |
17 |
19 |
83 |
18 |
69 |
14 |
13 |
11 |
12 |
|
6 |
3952 |
2493 |
613 |
1160 |
219 |
527 |
129 |
349 |
96 |
68 |
205 |
165 |
48 |
142 |
44 |
36 |
35 |
98 |
95 |
27 |
79 |
78 |
21 |
21 |
|
7 |
1961 |
736 |
307 |
356 |
110 |
85 |
65 |
50 |
48 |
258 |
31 |
28 |
24 |
166 |
23 |
17 |
19 |
17 |
18 |
98 |
14 |
13 |
11 |
12 |
|
8 |
5950 |
1494 |
1253 |
385 |
219 |
356 |
523 |
110 |
96 |
144 |
67 |
107 |
200 |
48 |
44 |
74 |
35 |
65 |
34 |
27 |
103 |
25 |
21 |
81 |
|
9 |
1961 |
1716 |
307 |
573 |
110 |
261 |
65 |
513 |
48 |
33 |
103 |
262 |
24 |
73 |
23 |
17 |
19 |
54 |
50 |
13 |
119 |
40 |
11 |
12 |
|
10 |
3952 |
1494 |
1104 |
385 |
1090 |
173 |
129 |
110 |
96 |
68 |
347 |
54 |
253 |
48 |
44 |
36 |
35 |
166 |
34 |
138 |
24 |
25 |
21 |
21 |
|
11 |
1961 |
736 |
307 |
191 |
211 |
85 |
65 |
50 |
510 |
33 |
31 |
28 |
24 |
24 |
23 |
17 |
19 |
17 |
176 |
13 |
14 |
13 |
11 |
129 |
|
12 |
4951 |
2493 |
1253 |
1160 |
219 |
1080 |
265 |
349 |
96 |
144 |
205 |
334 |
97 |
142 |
44 |
74 |
35 |
202 |
95 |
27 |
163 |
78 |
21 |
45 |
|
|
relative frequency: count/N*(pk - 1)² |
|
|
||||||||||||||||||||||
1 |
1.96 |
2.94 |
4.91 |
6.88 |
11.00 |
12.24 |
16.64 |
16.20 |
23.23 |
25.87 |
27.90 |
36.29 |
38.40 |
42.34 |
48.67 |
45.97 |
63.92 |
61.20 |
78.41 |
63.70 |
72.58 |
79.09 |
73.96 |
92.93 |
|
2 |
3.95 |
5.98 |
9.81 |
13.86 |
21.90 |
24.91 |
33.02 |
35.64 |
46.46 |
53.31 |
60.30 |
69.98 |
76.80 |
84.67 |
93.10 |
97.34 |
117.74 |
108.00 |
148.10 |
132.30 |
124.42 |
152.10 |
141.20 |
162.62 |
|
3 |
1.96 |
4.90 |
4.91 |
20.63 |
11.00 |
37.58 |
16.64 |
56.70 |
23.23 |
25.87 |
92.70 |
114.05 |
38.40 |
128.77 |
48.67 |
45.97 |
63.92 |
194.40 |
217.80 |
63.70 |
217.73 |
243.36 |
73.96 |
92.93 |
|
4 |
4.95 |
5.98 |
20.05 |
13.86 |
21.90 |
51.26 |
67.84 |
35.64 |
46.46 |
112.90 |
60.30 |
138.67 |
155.20 |
84.67 |
93.10 |
200.10 |
117.74 |
234.00 |
148.10 |
132.30 |
254.02 |
152.10 |
141.20 |
348.48 |
|
5 |
1.96 |
2.94 |
8.83 |
6.88 |
54.50 |
12.24 |
16.64 |
16.20 |
23.23 |
25.87 |
158.40 |
36.29 |
198.40 |
42.34 |
48.67 |
45.97 |
63.92 |
298.80 |
78.41 |
338.10 |
72.58 |
79.09 |
73.96 |
92.93 |
|
6 |
3.95 |
9.97 |
9.81 |
41.76 |
21.90 |
75.89 |
33.02 |
113.08 |
46.46 |
53.31 |
184.50 |
213.84 |
76.80 |
250.49 |
93.10 |
97.34 |
117.74 |
352.80 |
413.82 |
132.30 |
409.54 |
474.55 |
141.20 |
162.62 |
|
7 |
1.96 |
2.94 |
4.91 |
12.82 |
11.00 |
12.24 |
16.64 |
16.20 |
23.23 |
202.27 |
27.90 |
36.29 |
38.40 |
292.82 |
48.67 |
45.97 |
63.92 |
61.20 |
78.41 |
480.20 |
72.58 |
79.09 |
73.96 |
92.93 |
|
8 |
5.95 |
5.98 |
20.05 |
13.86 |
21.90 |
51.26 |
133.89 |
35.64 |
46.46 |
112.90 |
60.30 |
138.67 |
320.00 |
84.67 |
93.10 |
200.10 |
117.74 |
234.00 |
148.10 |
132.30 |
533.95 |
152.10 |
141.20 |
627.26 |
|
9 |
1.96 |
6.86 |
4.91 |
20.63 |
11.00 |
37.58 |
16.64 |
166.21 |
23.23 |
25.87 |
92.70 |
339.55 |
38.40 |
128.77 |
48.67 |
45.97 |
63.92 |
194.40 |
217.80 |
63.70 |
616.90 |
243.36 |
73.96 |
92.93 |
|
10 |
3.95 |
5.98 |
17.66 |
13.86 |
109.00 |
24.91 |
33.02 |
35.64 |
46.46 |
53.31 |
312.30 |
69.98 |
404.80 |
84.67 |
93.10 |
97.34 |
117.74 |
597.60 |
148.10 |
676.20 |
124.42 |
152.10 |
141.20 |
162.62 |
|
11 |
1.96 |
2.94 |
4.91 |
6.88 |
21.10 |
12.24 |
16.64 |
16.20 |
246.84 |
25.87 |
27.90 |
36.29 |
38.40 |
42.34 |
48.67 |
45.97 |
63.92 |
61.20 |
766.66 |
63.70 |
72.58 |
79.09 |
73.96 |
998.98 |
|
12 |
4.95 |
9.97 |
20.05 |
41.76 |
21.90 |
155.52 |
67.84 |
113.08 |
46.46 |
112.90 |
184.50 |
432.86 |
155.20 |
250.49 |
93.10 |
200.10 |
117.74 |
727.20 |
413.82 |
132.30 |
844.99 |
474.55 |
141.20 |
348.48 |
|
|
|||||||||||||||||||||||||
|
N=2000 |
Count of occurences of primefactor p in the (partial) Eulerproduct over prime(1)...prime(2000) |
|
|||||||||||||||||||||||
s\p |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
61 |
67 |
71 |
73 |
79 |
83 |
89 |
|
1 |
3965 |
1479 |
617 |
384 |
221 |
183 |
132 |
107 |
91 |
75 |
62 |
55 |
50 |
47 |
46 |
34 |
36 |
35 |
31 |
29 |
28 |
27 |
26 |
21 |
|
2 |
7979 |
2986 |
1226 |
777 |
440 |
359 |
259 |
233 |
184 |
146 |
129 |
112 |
97 |
97 |
86 |
73 |
67 |
65 |
55 |
60 |
53 |
51 |
47 |
43 |
|
3 |
3965 |
2469 |
617 |
1154 |
221 |
541 |
132 |
347 |
91 |
75 |
205 |
170 |
50 |
152 |
46 |
34 |
36 |
106 |
90 |
29 |
85 |
82 |
26 |
21 |
|
4 |
9978 |
2986 |
2494 |
777 |
440 |
721 |
522 |
233 |
184 |
296 |
129 |
230 |
199 |
97 |
86 |
152 |
67 |
134 |
55 |
60 |
105 |
51 |
47 |
90 |
|
5 |
3965 |
1479 |
1112 |
384 |
1102 |
183 |
132 |
107 |
91 |
75 |
332 |
55 |
244 |
47 |
46 |
34 |
36 |
162 |
31 |
143 |
28 |
27 |
26 |
21 |
|
6 |
7979 |
4985 |
1226 |
2333 |
440 |
1072 |
259 |
711 |
184 |
146 |
406 |
340 |
97 |
298 |
86 |
73 |
67 |
201 |
174 |
60 |
168 |
165 |
47 |
43 |
|
7 |
3965 |
1479 |
617 |
716 |
221 |
183 |
132 |
107 |
91 |
505 |
62 |
55 |
50 |
338 |
46 |
34 |
36 |
35 |
31 |
199 |
28 |
27 |
26 |
21 |
|
8 |
11977 |
2986 |
2494 |
777 |
440 |
721 |
1059 |
233 |
184 |
296 |
129 |
230 |
403 |
97 |
86 |
152 |
67 |
134 |
55 |
60 |
212 |
51 |
47 |
179 |
|
9 |
3965 |
3459 |
617 |
1154 |
221 |
541 |
132 |
1034 |
91 |
75 |
205 |
503 |
50 |
152 |
46 |
34 |
36 |
106 |
90 |
29 |
252 |
82 |
26 |
21 |
|
10 |
7979 |
2986 |
2210 |
777 |
2195 |
359 |
259 |
233 |
184 |
146 |
673 |
112 |
504 |
97 |
86 |
73 |
67 |
330 |
55 |
284 |
53 |
51 |
47 |
43 |
|
11 |
3965 |
1479 |
617 |
384 |
420 |
183 |
132 |
107 |
1040 |
75 |
62 |
55 |
50 |
47 |
46 |
34 |
36 |
35 |
340 |
29 |
28 |
27 |
26 |
250 |
|
12 |
9978 |
4985 |
2494 |
2333 |
440 |
2166 |
522 |
711 |
184 |
296 |
406 |
685 |
199 |
298 |
86 |
152 |
67 |
408 |
174 |
60 |
334 |
165 |
47 |
90 |
|
|
relative frequency: count/N*(pk - 1)² |
|
|
||||||||||||||||||||||
1 |
1.98 |
2.96 |
4.94 |
6.91 |
11.05 |
13.18 |
16.90 |
17.33 |
22.02 |
29.40 |
27.90 |
35.64 |
40.00 |
41.45 |
48.67 |
45.97 |
60.55 |
63.00 |
67.52 |
71.05 |
72.58 |
82.13 |
87.41 |
81.31 |
|
2 |
3.99 |
5.97 |
9.81 |
13.99 |
22.00 |
25.85 |
33.15 |
37.75 |
44.53 |
57.23 |
58.05 |
72.58 |
77.60 |
85.55 |
90.99 |
98.70 |
112.69 |
117.00 |
119.79 |
147.00 |
137.38 |
155.14 |
158.01 |
166.50 |
|
3 |
1.98 |
4.94 |
4.94 |
20.77 |
11.05 |
38.95 |
16.90 |
56.21 |
22.02 |
29.40 |
92.25 |
110.16 |
40.00 |
134.06 |
48.67 |
45.97 |
60.55 |
190.80 |
196.02 |
71.05 |
220.32 |
249.44 |
87.41 |
81.31 |
|
4 |
4.99 |
5.97 |
19.95 |
13.99 |
22.00 |
51.91 |
66.82 |
37.75 |
44.53 |
116.03 |
58.05 |
149.04 |
159.20 |
85.55 |
90.99 |
205.50 |
112.69 |
241.20 |
119.79 |
147.00 |
272.16 |
155.14 |
158.01 |
348.48 |
|
5 |
1.98 |
2.96 |
8.90 |
6.91 |
55.10 |
13.18 |
16.90 |
17.33 |
22.02 |
29.40 |
149.40 |
35.64 |
195.20 |
41.45 |
48.67 |
45.97 |
60.55 |
291.60 |
67.52 |
350.35 |
72.58 |
82.13 |
87.41 |
81.31 |
|
6 |
3.99 |
9.97 |
9.81 |
41.99 |
22.00 |
77.18 |
33.15 |
115.18 |
44.53 |
57.23 |
182.70 |
220.32 |
77.60 |
262.84 |
90.99 |
98.70 |
112.69 |
361.80 |
378.97 |
147.00 |
435.46 |
501.93 |
158.01 |
166.50 |
|
7 |
1.98 |
2.96 |
4.94 |
12.89 |
11.05 |
13.18 |
16.90 |
17.33 |
22.02 |
197.96 |
27.90 |
35.64 |
40.00 |
298.12 |
48.67 |
45.97 |
60.55 |
63.00 |
67.52 |
487.55 |
72.58 |
82.13 |
87.41 |
81.31 |
|
8 |
5.99 |
5.97 |
19.95 |
13.99 |
22.00 |
51.91 |
135.55 |
37.75 |
44.53 |
116.03 |
58.05 |
149.04 |
322.40 |
85.55 |
90.99 |
205.50 |
112.69 |
241.20 |
119.79 |
147.00 |
549.50 |
155.14 |
158.01 |
693.09 |
|
9 |
1.98 |
6.92 |
4.94 |
20.77 |
11.05 |
38.95 |
16.90 |
167.51 |
22.02 |
29.40 |
92.25 |
325.94 |
40.00 |
134.06 |
48.67 |
45.97 |
60.55 |
190.80 |
196.02 |
71.05 |
653.18 |
249.44 |
87.41 |
81.31 |
|
10 |
3.99 |
5.97 |
17.68 |
13.99 |
109.75 |
25.85 |
33.15 |
37.75 |
44.53 |
57.23 |
302.85 |
72.58 |
403.20 |
85.55 |
90.99 |
98.70 |
112.69 |
594.00 |
119.79 |
695.80 |
137.38 |
155.14 |
158.01 |
166.50 |
|
11 |
1.98 |
2.96 |
4.94 |
6.91 |
21.00 |
13.18 |
16.90 |
17.33 |
251.68 |
29.40 |
27.90 |
35.64 |
40.00 |
41.45 |
48.67 |
45.97 |
60.55 |
63.00 |
740.52 |
71.05 |
72.58 |
82.13 |
87.41 |
968.00 |
|
12 |
4.99 |
9.97 |
19.95 |
41.99 |
22.00 |
155.95 |
66.82 |
115.18 |
44.53 |
116.03 |
182.70 |
443.88 |
159.20 |
262.84 |
90.99 |
205.50 |
112.69 |
734.40 |
378.97 |
147.00 |
865.73 |
501.93 |
158.01 |
348.48 |
|
|
|||||||||||||||||||||||||
|
N=10000 |
Count of occurences of primefactor p in the (partial) Eulerproduct over prime(1)...prime(10000) |
|
|||||||||||||||||||||||
s\p |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
61 |
67 |
71 |
73 |
79 |
83 |
89 |
|
1 |
19954 |
7498 |
3110 |
1922 |
1086 |
898 |
660 |
574 |
464 |
369 |
348 |
280 |
257 |
251 |
219 |
193 |
179 |
172 |
150 |
153 |
138 |
134 |
115 |
106 |
|
2 |
39960 |
14984 |
6211 |
3857 |
2202 |
1789 |
1322 |
1169 |
941 |
738 |
688 |
567 |
515 |
489 |
444 |
385 |
347 |
346 |
294 |
293 |
279 |
257 |
238 |
221 |
|
3 |
19954 |
12486 |
3110 |
5783 |
1086 |
2702 |
660 |
1750 |
464 |
369 |
1047 |
863 |
257 |
739 |
219 |
193 |
179 |
516 |
458 |
153 |
423 |
390 |
115 |
106 |
|
4 |
49959 |
14984 |
12495 |
3857 |
2202 |
3586 |
2640 |
1169 |
941 |
1489 |
688 |
1137 |
1024 |
489 |
444 |
784 |
347 |
678 |
294 |
293 |
561 |
257 |
238 |
442 |
|
5 |
19954 |
7498 |
5594 |
1922 |
5487 |
898 |
660 |
574 |
464 |
369 |
1737 |
280 |
1257 |
251 |
219 |
193 |
179 |
835 |
150 |
737 |
138 |
134 |
115 |
106 |
|
6 |
39960 |
24983 |
6211 |
11642 |
2202 |
5408 |
1322 |
3520 |
941 |
738 |
2080 |
1714 |
515 |
1443 |
444 |
385 |
347 |
1030 |
915 |
293 |
848 |
774 |
238 |
221 |
|
7 |
19954 |
7498 |
3110 |
3583 |
1086 |
898 |
660 |
574 |
464 |
2566 |
348 |
280 |
257 |
1712 |
219 |
193 |
179 |
172 |
150 |
1006 |
138 |
134 |
115 |
106 |
|
8 |
59958 |
14984 |
12495 |
3857 |
2202 |
3586 |
5297 |
1169 |
941 |
1489 |
688 |
1137 |
2045 |
489 |
444 |
784 |
347 |
678 |
294 |
293 |
1130 |
257 |
238 |
899 |
|
9 |
19954 |
17474 |
3110 |
5783 |
1086 |
2702 |
660 |
5274 |
464 |
369 |
1047 |
2554 |
257 |
739 |
219 |
193 |
179 |
516 |
458 |
153 |
1268 |
390 |
115 |
106 |
|
10 |
39960 |
14984 |
11186 |
3857 |
11007 |
1789 |
1322 |
1169 |
941 |
738 |
3443 |
567 |
2561 |
489 |
444 |
385 |
347 |
1689 |
294 |
1442 |
279 |
257 |
238 |
221 |
|
11 |
19954 |
7498 |
3110 |
1922 |
2076 |
898 |
660 |
574 |
5204 |
369 |
348 |
280 |
257 |
251 |
219 |
193 |
179 |
172 |
1680 |
153 |
138 |
134 |
115 |
1245 |
|
12 |
49959 |
24983 |
12495 |
11642 |
2202 |
10840 |
2640 |
3520 |
941 |
1489 |
2080 |
3434 |
1024 |
1443 |
444 |
784 |
347 |
2041 |
915 |
293 |
1700 |
774 |
238 |
442 |
|
|
relative frequency rounded to integer: count/N*(pk - 1)² |
|
|
||||||||||||||||||||||
1 |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
22 |
29 |
31 |
36 |
41 |
44 |
46 |
52 |
60 |
62 |
65 |
75 |
72 |
82 |
77 |
82 |
|
2 |
4 |
6 |
10 |
14 |
22 |
26 |
34 |
38 |
46 |
58 |
62 |
73 |
82 |
86 |
94 |
104 |
117 |
125 |
128 |
144 |
145 |
156 |
160 |
171 |
|
3 |
2 |
5 |
5 |
21 |
11 |
39 |
17 |
57 |
22 |
29 |
94 |
112 |
41 |
130 |
46 |
52 |
60 |
186 |
200 |
75 |
219 |
237 |
77 |
82 |
|
4 |
5 |
6 |
20 |
14 |
22 |
52 |
68 |
38 |
46 |
117 |
62 |
147 |
164 |
86 |
94 |
212 |
117 |
244 |
128 |
144 |
291 |
156 |
160 |
342 |
|
5 |
2 |
3 |
9 |
7 |
55 |
13 |
17 |
19 |
22 |
29 |
156 |
36 |
201 |
44 |
46 |
52 |
60 |
301 |
65 |
361 |
72 |
82 |
77 |
82 |
|
6 |
4 |
10 |
10 |
42 |
22 |
78 |
34 |
114 |
46 |
58 |
187 |
222 |
82 |
255 |
94 |
104 |
117 |
371 |
399 |
144 |
440 |
471 |
160 |
171 |
|
7 |
2 |
3 |
5 |
13 |
11 |
13 |
17 |
19 |
22 |
201 |
31 |
36 |
41 |
302 |
46 |
52 |
60 |
62 |
65 |
493 |
72 |
82 |
77 |
82 |
|
8 |
6 |
6 |
20 |
14 |
22 |
52 |
136 |
38 |
46 |
117 |
62 |
147 |
327 |
86 |
94 |
212 |
117 |
244 |
128 |
144 |
586 |
156 |
160 |
696 |
|
9 |
2 |
7 |
5 |
21 |
11 |
39 |
17 |
171 |
22 |
29 |
94 |
331 |
41 |
130 |
46 |
52 |
60 |
186 |
200 |
75 |
657 |
237 |
77 |
82 |
|
10 |
4 |
6 |
18 |
14 |
110 |
26 |
34 |
38 |
46 |
58 |
310 |
73 |
410 |
86 |
94 |
104 |
117 |
608 |
128 |
707 |
145 |
156 |
160 |
171 |
|
11 |
2 |
3 |
5 |
7 |
21 |
13 |
17 |
19 |
252 |
29 |
31 |
36 |
41 |
44 |
46 |
52 |
60 |
62 |
732 |
75 |
72 |
82 |
77 |
964 |
|
12 |
5 |
10 |
20 |
42 |
22 |
156 |
68 |
114 |
46 |
117 |
187 |
445 |
164 |
255 |
94 |
212 |
117 |
735 |
399 |
144 |
881 |
471 |
160 |
342 |
|
|
|
|
|||||||||||||||||||||||
|
|
|
N=20000 |
Count of occurences of primefactor p in the (partial) Eulerproduct over prime(1)...prime(20000) |
|
||||||||||||||||||||||||
s\p |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
61 |
67 |
71 |
73 |
79 |
83 |
89 |
|
|
1 |
40152 |
15083 |
6247 |
3897 |
2195 |
1812 |
1332 |
1170 |
946 |
742 |
683 |
574 |
524 |
489 |
444 |
394 |
357 |
336 |
307 |
294 |
282 |
273 |
236 |
231 |
|
|
2 |
80415 |
30152 |
12538 |
7804 |
4393 |
3613 |
2665 |
2351 |
1902 |
1481 |
1380 |
1147 |
1042 |
984 |
898 |
786 |
711 |
691 |
614 |
578 |
555 |
528 |
491 |
475 |
|
|
3 |
40152 |
25127 |
6247 |
11690 |
2195 |
5402 |
1332 |
3552 |
946 |
742 |
2063 |
1724 |
524 |
1511 |
444 |
394 |
357 |
1012 |
917 |
294 |
841 |
779 |
236 |
231 |
|
|
4 |
100537 |
30152 |
25157 |
7804 |
4393 |
7249 |
5351 |
2351 |
1902 |
2978 |
1380 |
2289 |
2074 |
984 |
898 |
1581 |
711 |
1376 |
614 |
578 |
1132 |
528 |
491 |
929 |
|
|
5 |
40152 |
15083 |
11256 |
3897 |
11040 |
1812 |
1332 |
1170 |
946 |
742 |
3454 |
574 |
2544 |
489 |
444 |
394 |
357 |
1707 |
307 |
1459 |
282 |
273 |
236 |
231 |
|
|
6 |
80415 |
50274 |
12538 |
23461 |
4393 |
10852 |
2665 |
7069 |
1902 |
1481 |
4169 |
3440 |
1042 |
2965 |
898 |
786 |
711 |
2043 |
1856 |
578 |
1671 |
1558 |
491 |
475 |
|
|
7 |
40152 |
15083 |
6247 |
7245 |
2195 |
1812 |
1332 |
1170 |
946 |
5188 |
683 |
574 |
524 |
3419 |
444 |
394 |
357 |
336 |
307 |
2005 |
282 |
273 |
236 |
231 |
|
|
8 |
120659 |
30152 |
25157 |
7804 |
4393 |
7249 |
10673 |
2351 |
1902 |
2978 |
1380 |
2289 |
4142 |
984 |
898 |
1581 |
711 |
1376 |
614 |
578 |
2257 |
528 |
491 |
1835 |
|
|
9 |
40152 |
35171 |
6247 |
11690 |
2195 |
5402 |
1332 |
10600 |
946 |
742 |
2063 |
5128 |
524 |
1511 |
444 |
394 |
357 |
1012 |
917 |
294 |
2574 |
779 |
236 |
231 |
|
|
10 |
80415 |
30152 |
22571 |
7804 |
22113 |
3613 |
2665 |
2351 |
1902 |
1481 |
6912 |
1147 |
5150 |
984 |
898 |
786 |
711 |
3423 |
614 |
2903 |
555 |
528 |
491 |
475 |
|
|
11 |
40152 |
15083 |
6247 |
3897 |
4201 |
1812 |
1332 |
1170 |
10477 |
742 |
683 |
574 |
524 |
489 |
444 |
394 |
357 |
336 |
3378 |
294 |
282 |
273 |
236 |
2541 |
|
|
12 |
100537 |
50274 |
25157 |
23461 |
4393 |
21787 |
5351 |
7069 |
1902 |
2978 |
4169 |
6928 |
2074 |
2965 |
898 |
1581 |
711 |
4077 |
1856 |
578 |
3374 |
1558 |
491 |
929 |
|
|
|
relative frequency rounded to integer: count/N*(pk - 1)² |
|
|
|||||||||||||||||||||||
1 |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
42 |
43 |
47 |
53 |
60 |
60 |
67 |
72 |
73 |
83 |
79 |
89 |
|
|
2 |
4 |
6 |
10 |
14 |
22 |
26 |
34 |
38 |
46 |
58 |
62 |
74 |
83 |
87 |
95 |
106 |
120 |
124 |
134 |
142 |
144 |
161 |
165 |
184 |
|
|
3 |
2 |
5 |
5 |
21 |
11 |
39 |
17 |
58 |
23 |
29 |
93 |
112 |
42 |
133 |
47 |
53 |
60 |
182 |
200 |
72 |
218 |
237 |
79 |
89 |
p=1(mod3) |
|
4 |
5 |
6 |
20 |
14 |
22 |
52 |
68 |
38 |
46 |
117 |
62 |
148 |
166 |
87 |
95 |
214 |
120 |
248 |
134 |
142 |
293 |
161 |
165 |
360 |
|
|
5 |
2 |
3 |
9 |
7 |
55 |
13 |
17 |
19 |
23 |
29 |
155 |
37 |
204 |
43 |
47 |
53 |
60 |
307 |
67 |
357 |
73 |
83 |
79 |
89 |
p=1(mod5) |
|
6 |
4 |
10 |
10 |
42 |
22 |
78 |
34 |
115 |
46 |
58 |
188 |
223 |
83 |
262 |
95 |
106 |
120 |
368 |
404 |
142 |
433 |
474 |
165 |
184 |
|
|
7 |
2 |
3 |
5 |
13 |
11 |
13 |
17 |
19 |
23 |
203 |
31 |
37 |
42 |
302 |
47 |
53 |
60 |
60 |
67 |
491 |
73 |
83 |
79 |
89 |
p=1(mod7) |
|
8 |
6 |
6 |
20 |
14 |
22 |
52 |
137 |
38 |
46 |
117 |
62 |
148 |
331 |
87 |
95 |
214 |
120 |
248 |
134 |
142 |
585 |
161 |
165 |
711 |
|
|
9 |
2 |
7 |
5 |
21 |
11 |
39 |
17 |
172 |
23 |
29 |
93 |
332 |
42 |
133 |
47 |
53 |
60 |
182 |
200 |
72 |
667 |
237 |
79 |
89 |
|
|
10 |
4 |
6 |
18 |
14 |
111 |
26 |
34 |
38 |
46 |
58 |
311 |
74 |
412 |
87 |
95 |
106 |
120 |
616 |
134 |
711 |
144 |
161 |
165 |
184 |
|
|
11 |
2 |
3 |
5 |
7 |
21 |
13 |
17 |
19 |
254 |
29 |
31 |
37 |
42 |
43 |
47 |
53 |
60 |
60 |
736 |
72 |
73 |
83 |
79 |
984 |
|
|
12 |
5 |
10 |
20 |
42 |
22 |
157 |
68 |
115 |
46 |
117 |
188 |
449 |
166 |
262 |
95 |
214 |
120 |
734 |
404 |
142 |
875 |
474 |
165 |
360 |
|
|
|
||||||||||||||||||||||||||
|
N=41000 |
Count of occurences of primefactor p in the (partial) Eulerproduct over prime(1)...prime(41000) |
|
||||||||||||||||||||||||
s\p |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
61 |
67 |
71 |
73 |
79 |
83 |
89 |
|
|
1 |
81841 |
30680 |
12814 |
7923 |
4478 |
3702 |
2716 |
2385 |
1936 |
1527 |
1382 |
1167 |
1061 |
990 |
919 |
797 |
724 |
692 |
633 |
593 |
561 |
541 |
497 |
466 |
|
|
2 |
163877 |
61441 |
25591 |
15930 |
9021 |
7381 |
5426 |
4826 |
3879 |
3016 |
2804 |
2332 |
2112 |
1980 |
1838 |
1598 |
1445 |
1401 |
1258 |
1184 |
1123 |
1058 |
1017 |
936 |
|
|
3 |
81841 |
51149 |
12814 |
23840 |
4478 |
11087 |
2716 |
7196 |
1936 |
1527 |
4205 |
3503 |
1061 |
3025 |
919 |
797 |
724 |
2095 |
1897 |
593 |
1700 |
1591 |
497 |
466 |
|
|
4 |
204876 |
61441 |
51242 |
15930 |
9021 |
14805 |
10898 |
4826 |
3879 |
6024 |
2804 |
4664 |
4216 |
1980 |
1838 |
3204 |
1445 |
2797 |
1258 |
1184 |
2277 |
1058 |
1017 |
1874 |
|
|
5 |
81841 |
30680 |
23065 |
7923 |
22438 |
3702 |
2716 |
2385 |
1936 |
1527 |
7021 |
1167 |
5228 |
990 |
919 |
797 |
724 |
3468 |
633 |
2972 |
561 |
541 |
497 |
466 |
|
|
6 |
163877 |
102440 |
25591 |
47837 |
9021 |
22149 |
5426 |
14425 |
3879 |
3016 |
8478 |
7014 |
2112 |
5992 |
1838 |
1598 |
1445 |
4175 |
3786 |
1184 |
3421 |
3171 |
1017 |
936 |
|
|
7 |
81841 |
30680 |
12814 |
14732 |
4478 |
3702 |
2716 |
2385 |
1936 |
10626 |
1382 |
1167 |
1061 |
6987 |
919 |
797 |
724 |
692 |
633 |
4139 |
561 |
541 |
497 |
466 |
|
|
8 |
245875 |
61441 |
51242 |
15930 |
9021 |
14805 |
21766 |
4826 |
3879 |
6024 |
2804 |
4664 |
8412 |
1980 |
1838 |
3204 |
1445 |
2797 |
1258 |
1184 |
4560 |
1058 |
1017 |
3738 |
|
|
9 |
81841 |
71618 |
12814 |
23840 |
4478 |
11087 |
2716 |
21571 |
1936 |
1527 |
4205 |
10482 |
1061 |
3025 |
919 |
797 |
724 |
2095 |
1897 |
593 |
5181 |
1591 |
497 |
466 |
|
|
10 |
163877 |
61441 |
46070 |
15930 |
45072 |
7381 |
5426 |
4826 |
3879 |
3016 |
14094 |
2332 |
10496 |
1980 |
1838 |
1598 |
1445 |
6934 |
1258 |
5930 |
1123 |
1058 |
1017 |
936 |
|
|
11 |
81841 |
30680 |
12814 |
7923 |
8572 |
3702 |
2716 |
2385 |
21357 |
1527 |
1382 |
1167 |
1061 |
990 |
919 |
797 |
724 |
692 |
6881 |
593 |
561 |
541 |
497 |
5145 |
|
|
12 |
204876 |
102440 |
51242 |
47837 |
9021 |
44365 |
10898 |
14425 |
3879 |
6024 |
8478 |
14052 |
4216 |
5992 |
1838 |
3204 |
1445 |
8356 |
3786 |
1184 |
6896 |
3171 |
1017 |
1874 |
|
|
|
relative frequency rounded to integer: count/N*(pk - 1)² |
|
|
|||||||||||||||||||||||
1 |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
30 |
37 |
41 |
43 |
47 |
53 |
59 |
61 |
67 |
71 |
71 |
80 |
82 |
88 |
|
|
2 |
4 |
6 |
10 |
14 |
22 |
26 |
34 |
38 |
46 |
58 |
62 |
74 |
82 |
85 |
95 |
105 |
119 |
123 |
134 |
142 |
142 |
157 |
167 |
177 |
|
|
3 |
2 |
5 |
5 |
21 |
11 |
39 |
17 |
57 |
23 |
29 |
92 |
111 |
41 |
130 |
47 |
53 |
59 |
184 |
202 |
71 |
215 |
236 |
82 |
88 |
p=1(mod3) |
|
4 |
5 |
6 |
20 |
14 |
22 |
52 |
68 |
38 |
46 |
115 |
62 |
147 |
165 |
85 |
95 |
211 |
119 |
246 |
134 |
142 |
288 |
157 |
167 |
354 |
|
|
5 |
2 |
3 |
9 |
7 |
55 |
13 |
17 |
19 |
23 |
29 |
154 |
37 |
204 |
43 |
47 |
53 |
59 |
305 |
67 |
355 |
71 |
80 |
82 |
88 |
p=1(mod5) |
|
6 |
4 |
10 |
10 |
42 |
22 |
78 |
34 |
114 |
46 |
58 |
186 |
222 |
82 |
258 |
95 |
105 |
119 |
367 |
402 |
142 |
433 |
471 |
167 |
177 |
|
|
7 |
2 |
3 |
5 |
13 |
11 |
13 |
17 |
19 |
23 |
203 |
30 |
37 |
41 |
301 |
47 |
53 |
59 |
61 |
67 |
495 |
71 |
80 |
82 |
88 |
p=1(mod7) |
|
8 |
6 |
6 |
20 |
14 |
22 |
52 |
136 |
38 |
46 |
115 |
62 |
147 |
328 |
85 |
95 |
211 |
119 |
246 |
134 |
142 |
577 |
157 |
167 |
706 |
|
|
9 |
2 |
7 |
5 |
21 |
11 |
39 |
17 |
170 |
23 |
29 |
92 |
331 |
41 |
130 |
47 |
53 |
59 |
184 |
202 |
71 |
655 |
236 |
82 |
88 |
|
|
10 |
4 |
6 |
18 |
14 |
110 |
26 |
34 |
38 |
46 |
58 |
309 |
74 |
410 |
85 |
95 |
105 |
119 |
609 |
134 |
709 |
142 |
157 |
167 |
177 |
|
|
11 |
2 |
3 |
5 |
7 |
21 |
13 |
17 |
19 |
252 |
29 |
30 |
37 |
41 |
43 |
47 |
53 |
59 |
61 |
731 |
71 |
71 |
80 |
82 |
972 |
|
|
12 |
5 |
10 |
20 |
42 |
22 |
156 |
68 |
114 |
46 |
115 |
186 |
444 |
165 |
258 |
95 |
211 |
119 |
734 |
402 |
142 |
872 |
471 |
167 |
354 |
|
|
|
|
|||||||||||||||||||||||||
|
|