Cycles in generalized Collatz-transformation.
We consider the generalized Collatz-transformation for some given prime p
ak+1= {p*ak + 1}p-1
where {n}Q means: remove all primefactors qk <Q from some given n
(see for instance https://math.stackexchange.com/questions/4653947/collatz-conjecture-generalization )
Here we search for existence of cycles; the range of basic primes is p=2..97, and p=25-1=31,27-1=127,213-1,217-1,219-1
Note_1: a1 with absolute values from 2.. 106 are used.
Note_2: Cycles with larger first element might occur when some valid a1 leads to higher values than 106 and after some iterations a cycle begins in that larger numbers
cycles:
- - - - - - -
-7(2): -7 -17 -7
cycles:
- - - - - - -
-11(2): -11 -19 -11
-509(4): -509 -1781 -6233 -4363 -509
-701(4): -701 -2453 -1717 -2003 -701
-961(4): -961 -1121 -3923 -1373 -961
cycles:
17(3): 17 47 37 17
- - - - - - -
-13(2): -13 -71 -13
-17(2): -17 -31 -17
cycles:
19( 4): 19 31 101 73 19
- - - - - - -
-19( 2): -19 -41 -19
-9959(19): -9959 -64733 -105191 -683741 -1111079 -7222013 -11735771 -76282511 -495836321 -1611468043 -1163838031 -120078527 -31220417 -20293271 -131906261 -107173837 -11610499 -25156081 -3893203 -9959
-99503(17): -99503 -646769 -2101999 -4554331 -365471 -2375561 -1102939 -796567 -345179 -2243663 -14583809 -47397379 -102694321 -111252181 -30130799 -2543509 -688867 -99503
cycles:
43(22): 43 61 173 1471 521 4429 4183 2963 257 437 743 1579 2237 3803 2309 19627 5561 47269 14881 3833 32581 263 43
- - - - - - -
-29( 2): -29 -41 -29
cycles:
46063(16): 46063 437599 4157191 7898663 25012433 39603019 376228681 32492477 25723211 16291367 1563313 675067 6413137 30462401 1378061 72731 46063
- - - - - - -
-23( 2): -23 -109 -23
-83( 6): -83 -197 -1871 -8887 -14071 -22279 -83
cycles:
179(4): 179 2059 877 1681 179
- - - - - - -
-31(2): -31 -89 -31
cycles:
- - - - - - -
-31( 2): -31 -449 -31
-43( 2): -43 -89 -43
-4337(11): -4337 -10481 -8443 -17489 -8453 -5107 -74051 -357913 -2594869 -5879 -5683 -4337
cycles:
67(30): 67 1039 3221 8321 2687 13883 10247 4813 3391 52561 101837 29231 151027 334417 197 509 263 151 2341 18143 93739 41513 1849 1433 617 797 71 367 5689 4409 67
- - - - - - -
-37( 2): -37 -191 -37
-41( 2): -41 -127 -41
cycles:
2173(17): 2173 5743 7589 46799 16033 42373 783901 1318379 2032501 37601269 975629 6016379 545603 420569 864503 18133 2819 2173
- - - - - - -
-41( 2): -41 -379 -41
cycles:
- - - - - - -
-43(2): -43 -881 -43
-53(2): -53 -181 -53
-71(2): -71 -97 -71
-33493(6): -33493 -343303 -413983 -8486651 -3866141 -125803 -33493
-44917(6): -44917 -460399 -555187 -11381333 -3535111 -59159 -44917
-76081(6): -76081 -77983 -1598651 -128519 -125459 -857303 -76081
-82933(4): -82933 -850063 -17426291 -821239 -82933
-87931(4): -87931 -360517 -3695299 -10821947 -87931
-124447(4): -124447 -2551163 -2490421 -176047 -124447
cycles:
174569(13): 174569 208513 448303 1927703 2763041 3300299 23652143 6780281 8098669 21765173 236339 1693763 2427727 174569
- - - - - - -
-71(2): -71 -109 -71
-94769(4): -94769 -2037533 -6258137 -727297 -94769
-138113(4): -138113 -2969429 -246497 -1059937 -138113
cycles:
2243(14): 2243 52711 412903 294037 20939 492067 154181 1811627 8514647 40018841 171739 122299 73693 41233 2243
- - - - - - -
-71(2): -71 -139 -71
-63979(8): -63979 -751753 -3533239 -2965397 -7742981 -5513941 -379993 -1785967 -63979
-128437(4): -128437 -3018269 -1390771 -1257043 -128437
-130597(4): -130597 -3069029 -1045249 -1444903 -130597
-178813(4): -178813 -840421 -858691 -593507 -178813
-197629(4): -197629 -273193 -1284007 -7543541 -197629
-239017(4): -239017 -244213 -1147801 -2074871 -239017
-256691(4): -256691 -1005373 -363481 -502459 -256691
-258337(4): -258337 -263953 -1240579 -857459 -258337
-281873(4): -281873 -441601 -451201 -623719 -281873
cycles:
19559(14): 19559 259157 6867661 60664339 22327847 295843973 223996151 102343069 816649 7213733 332459 200231 2653061 10043731 19559
- - - - - - -
-59( 2): -59 -521 -59
-89( 2): -89 -131 -89
-1163411(11): -1163411 -3425599 -12968339 -114553661 -4864859 -4774769 -7029521 -1478431 -2304613 -15268061 -4214621 -1163411
cycles:
73(7): 73 359 89 101 149 157 193 73
- - - - - - -
-71(2): -71 -349 -71
-79(2): -79 -233 -79
cycles:
97(3): 97 269 547 97
199(7): 199 607 9257 10457 2593 79087 1206077 199
26833(6): 26833 818407 290249 590173 947383 14447591 26833
- - - - - - -
-71(2): -71 -433 -71
cycles:
181(3): 181 379 12697 181
- - - - - - -
-89(2): -89 -271 -89
-101(2): -101 -199 -101
-109(6): -109 -1217 -691 -643 -359 -859 -109
cycles:
306511(7): 306511 3627047 6776851 80192737 79078949 280730269 22146499 306511
- - - - - - -
-73(2): -73 -2591 -73
-79(2): -79 -701 -79
-83(2): -83 -491 -83
-101(2): -101 -239 -101
-107(2): -107 -211 -107
-113(2): -113 -191 -113
-173021(6): -173021 -409483 -7268323 -129012733 -4579952021 -73736189 -173021
cycles:
14929( 8): 14929 544909 19889179 51853931 147473 119617 17257 89983 14929
140729(12): 140729 1712203 6249541 228108247 25383997 132359413 193244743 44083957 123774187 2258878913 6913969 6820537 140729
- - - - - - -
-353(4): -353 -3221 -2027 -14797 -353
-1429(9): -1429 -8693 -158647 -386041 -2621 -1543 -18773 -342607 -4933 -1429
-433003(4): -433003 -5268203 -14791493 -269944747 -433003
-446111(4): -446111 -16283051 -45717797 -4069999 -446111
-544421(4): -544421 -9935683 -3267139 -3057707 -544421
-557671(4): -557671 -6784997 -24765239 -1695931 -557671
-610411(4): -610411 -7426667 -1322309 -24132139 -610411
-713239(4): -713239 -8677741 -1287551 -3615047 -713239
-727357(4): -727357 -884951 -32300711 -28755511 -727357
-744397(4): -744397 -905683 -11019143 -30938363 -744397
-816869(4): -816869 -14907859 -13952227 -828059 -816869
-877739(4): -877739 -2464421 -1215559 -4929767 -877739
-929371(4): -929371 -11307347 -2230909 -1043951 -929371
cycles:
- - - - - - -
-131( 2): -131 -199 -131
-137(11): -137 -773 -1607 -2267 -44773 -45347 -47137 -206879 -4751 -317 -659 -137
-1307( 4): -1307 -25813 -2111 -1489 -1307
-8741( 4): -8741 -345269 -21821 -861929 -8741
-191627(13): -191627 -3784633 -4530091 -9941033 -56095829 -443157049 -1166980229 -542302577 -578944643 -85971103 -141494107 -7961563 -52413623 -191627
cycles:
89(21): 89 1847 76651 151477 261929 418079 17350279 240012193 135131 5607937 38788231 16259713 110801 19001 394271 1487477 7716287 320225911 340753213 522589 35437 89
4049(22): 4049 84017 1743353 76157 790129 5465059 75599983 9093911 53913901 62150747 368465143 339806743 49480631 6867713 28501009 17921089 5389313 604477 2090483 70247 47791 661109 4049
- - - - - - -
-89( 2): -89 -1231 -89
-747613( 4): -747613 -4432277 -12262633 -9601873 -747613
cycles:
- - - - - - -
-113(2): -113 -419 -113
-1489(7): -1489 -3313 -36857 -1847 -27397 -3607 -12347 -1489
cycles:
1109(22): 1109 17929 66889 170743 108961 480419 57961 401587 36749 16057 11981 193693 9394111 401069 6483949 16551133 802729951 12942953 4866149 864499 20964101 6311 1109
- - - - - - -
-109( 2): -109 -881 -109
================================================================================================
p from Mersenne-primes:
================================================================================================
cycles:
- - - - - - -
-131(2): -131 -4159 -131
-139(2): -139 -1471 -139
-191(2): -191 -379 -191
-239(2): -239 -271 -239
cycles:
118583(17): 118583 4905623 6696992999 2148651377 122219468257 1646545500811 4156807 17024203069 2045251501 12729981037 26067818668517 114150635177 3911904863 4513513 1782211 155298833 4379623 118583...
- - - - - - -
-8231(2): -8231 -1685503 -8231
-8233(2): -8233 -1605631 -8233
-8263(2): -8263 -940031 -8263
-8287(2): -8287 -707071 -8287
-8447(2): -8447 -270271 -8447
-8737(2): -8737 -131071 -8737
-8831(2): -8831 -113023 -8831
-8971(2): -8971 -94207 -8971
-9151(2): -9151 -78079 -9151
-9343(2): -9343 -66431 -9343
-11519(2): -11519 -28351 -11519
-12671(2): -12671 -23167 -12671
-12799(2): -12799 -22751 -12799
-15359(2): -15359 -17551 -15359
cycles:
132409(7): 132409, 4472933, 59507897, 2074903, 5912165459, 1305137, 1069267, 132409,
- - - - - - -
-136511(2): -136511 -3289087 -136511
-141311(2): -141311 -1808767 -141311
-174761(2): -174761 -524287 -174761
-235927(2): -235927 -294911 -235927
cycles:
- - - - - - -
-524351(2): -524351 -4295475199 -524351
-525199(2): -525199 -301924351 -525199
-525439(2): -525439 -239132671 -525439
-538651(2): -538651 -19660799 -538651
-546479(2): -546479 -12910591 -546479
-561079(2): -561079 -7995391 -561079
-562591(2): -562591 -7700479 -562591
-653311(2): -653311 -2654719 -653311
-657439(2): -657439 -2588671 -657439
-1047551(2): -1047551 -1049599 -1047551
(valid 1<a1 <1 000 000 : for p=2^19-1 number of admissible initial values: 35110)
===========================================================================================================
Gottfried Helms, 10'2024