Tetration

 

 

Gottfried Helms - Univ Kassel        01 - 2008

 

 

Continuous Ue-Tetration (f(x) = exp(x)-1, iterated)

Radius of convergence is zero for fractional heights h

 

In their article "On analytic iteration" Erdös & Jabotinsky [1] stated 1960, that "the function ez-1 was shown by I.N.Baker to have no real non-integer iterates" and cited I.N.Bakers article of 1958.

However, I.N.Baker [2] deals with this question in terms of "radius of convergence", and the focus of his proof is, that "the radius of convergence isnonzero iff the iterator h is integer" (rough translation).

The latter can be shown by numerical examples. However, although the simple inspection seconds this strongly, the zero-radius of convergence does not mean, that to such a powerseries a value could not be assigned principally. If we study powerseries in the well established context of summation of divergent series (see for instance [3] or [4]), we are no more lost in space: we may apply Cesaro-/Euler- or Borel-summation to assign values to a divergent series, if their terms oscillate in sign and "diverge not too strong" (L. Euler).

Thus, if we can show, that the growthrate of the terms of the occuring series "is not too strong", then we may assign values to continuous U-tetration as well, based on those concepts of divergent summation.

From empirical evidence it seems, that the growthrate of terms is roughly hypergeometric (the logarithms of their absolute values increase roughly with their index) and may be Euler- or Borel-summable.

Adding the concept of divergent summation seems to fill the gap, which is the reason for the common expression, that continuous iteration / tetration were not existent/meaningful.

Update 8.12.2010: tables 2 and 3 were wrong; graphical plots added


 

Table 1) Terms of powerseries for U-tetration 1(x) = exp(x)-1, for different "height" h

The powerseries for h(x) is constructed, if the terms of one column are associated with a power of x, so

        1(x) = 0 + 1.0*x + 0.5*x2 + 0.1666*x3 + 0.041666*x4 + ...

 

h=1

h=1+1e-10

h=1+1e-9

h=1+1e-8

h=1+1e-7

h=1.000001

h=1.00001

h=1.0001

h=1.001

h=1.01

h=1.1

0

0

0

0

0

0

0

0

0

0

0

1.00000000000

1.00000000000

1.00000000000

1.00000000000

1.00000000000

1.00000000000

1.00000000000

1.00000000000

1.00000000000

1.00000000000

1.00000000000

0.500000000000

0.500000000050

0.500000000500

0.500000005000

0.500000050000

0.500000500000

0.500005000000

0.500050000000

0.500500000000

0.505000000000

0.550000000000

0.166666666667

0.166666666708

0.166666667083

0.166666670833

0.166666708333

0.166667083334

0.166670833358

0.166708335833

0.167083583333

0.170858333333

0.210833333333

0.0416666666667

0.0416666666854

0.0416666668542

0.0416666685417

0.0416666854167

0.0416668541669

0.0416685416938

0.0416854193751

0.0418544376250

0.0435688750000

0.0632500000000

0.00833333333333

0.00833333333903

0.00833333339028

0.00833333390278

0.00833333902778

0.00833339027792

0.00833390279236

0.00833902923627

0.00839042377090

0.00891752145833

0.0156520833333

0.00138888888889

0.00138888889020

0.00138888890197

0.00138888901968

0.00138889019676

0.00138890196764

0.00138901968094

0.00139019726109

0.00140201786294

0.00152479082778

0.00330439236111

0.000198412698413

0.000198412698664

0.000198412700926

0.000198412723545

0.000198412949736

0.000198415211653

0.000198437831961

0.000198664148515

0.000200938693519

0.000224854764284

0.000619448412698

0.0000248015873016

0.0000248015873400

0.0000248015876860

0.0000248015911458

0.0000248016257441

0.0000248019717289

0.0000248054318209

0.0000248400570949

0.0000251887541028

0.0000289291637162

0.000103086328125

0.00000275573192240

0.00000275573192619

0.00000275573196029

0.00000275573230131

0.00000275573571153

0.00000275576981414

0.00000275611087794

0.00000275952529651

0.00000279404961159

0.00000317944735419

0.0000139371209491

0.000000275573192240

0.000000275573193772

0.000000275573207557

0.000000275573345413

0.000000275574723968

0.000000275588509546

0.000000275726367947

0.000000277105214294

0.000000290920211150

0.000000432038819637

0.00000265797691816

0.0000000250521083854

0.0000000250521086406

0.0000000250521109366

0.0000000250521338968

0.0000000250523634998

0.0000000250546595623

0.0000000250776234941

0.0000000253075935284

0.0000000276403744666

0.0000000542870818543

0.000000694792899125

0.00000000208767569879

0.00000000208767508886

0.00000000208766959950

0.00000000208761470595

0.00000000208706577045

0.00000000208157641849

0.00000000202668320538

0.00000000147778177866

-0.00000000400810172166

-0.0000000584935612695

-0.000000504664368756

1.60590438368E-10

1.60590634904E-10

1.60592403728E-10

1.60610091959E-10

1.60786974092E-10

1.62555776881E-10

1.80241951284E-10

0.000000000356918343734

0.00000000210514446846

0.0000000177318932836

-0.00000000421802807312

1.14707455977E-11

1.14711315701E-11

1.14746053210E-11

1.15093428309E-11

1.18567180149E-11

1.53304783117E-11

5.00689269706E-11

0.000000000397537943013

0.00000000388064141333

0.0000000395131940522

0.000000435582178182

7.64716373182E-13

7.64343573715E-13

7.60988378525E-13

7.27436427861E-13

3.91917044815E-13

-2.96326442665E-12

-3.65138432155E-11

-0.000000000371896012790

-0.00000000371333021346

-0.0000000358639150239

-0.000000212854713628

4.77947733239E-14

4.75658969877E-14

4.55060099468E-14

2.49071380137E-14

-1.81081733747E-13

-2.24098569433E-12

-2.28415495699E-11

-2.28999588279E-10

-0.00000000230579288804

-0.0000000245673611746

-0.000000364113506315

2.81145725435E-15

3.37631562397E-15

8.46004094342E-15

5.92972934240E-14

5.67669746844E-13

5.65138714248E-12

5.64878471972E-11

0.000000000564781012687

0.00000000564052431814

0.0000000556347296302

0.000000440314777474

1.56192069686E-16

2.10871750162E-16

7.02988899063E-16

5.62416282482E-15

5.48361457572E-14

5.46980342549E-13

5.47085904392E-12

5.49533060394E-11

0.000000000574130308854

0.00000000818667698740

0.000000302531826895

8.22063524662E-18

-9.08613397676E-16

-9.16011969464E-15

-9.16751827296E-14

-9.16825819610E-13

-9.16833284145E-12

-9.16834682882E-11

-0.000000000916841270162

-0.00000000916898862257

-0.0000000916721406804

-0.000000842960622434

4.11031762331E-19

3.17546572127E-16

3.17176639274E-15

3.17139603745E-14

3.17135477755E-13

3.17130840788E-12

3.17088133269E-11

0.000000000316661410455

0.00000000312392851086

0.0000000269588495460

-0.000000152576230905

1.95729410634E-20

1.68192462253E-15

1.68190700898E-14

1.68190526843E-13

1.68190530239E-12

1.68190738594E-11

1.68192839437E-10

0.00000000168213835683

0.0000000168422404977

0.000000170368161242

0.00000175588878735

8.89679139245E-22

-1.44006757299E-15

-1.44006836535E-14

-1.44006836200E-13

-1.44006753577E-12

-1.44005919420E-11

-1.43997576963E-10

-0.00000000143914142805

-0.0000000143078854015

-0.000000134634795548

-0.000000447507575851

3.86817017063E-23

-3.49777585220E-15

-3.49777589582E-14

-3.49777598736E-13

-3.49777686828E-12

-3.49778567395E-11

-0.000000000349787372745

-0.00000000349875397329

-0.0000000350752749065

-0.000000359233754730

-0.00000412470467839

1.61173757110E-24

5.38854766141E-15

5.38854764161E-14

5.38854745801E-13

5.38854562339E-12

5.38852727729E-11

0.000000000538834381251

0.00000000538650878326

0.0000000536812042036

0.000000518050812288

0.00000301683343116

6.44695028438E-26

8.08723815709E-15

8.08723819079E-14

8.08723852840E-13

8.08724190448E-12

8.08727566529E-11

0.000000000808761326671

0.00000000809098861218

0.0000000812467507604

0.000000845471578850

0.0000109668435898

2.47959626322E-27

-2.08610643846E-14

-2.08610643403E-13

-2.08610638979E-12

-2.08610594741E-11

-2.08610152358E-10

-0.00000000208605728378

-0.0000000208561473527

-0.000000208117422036

-0.00000203528517695

-0.0000145013111830

9.18368986380E-29

-1.98804698507E-14

-1.98804699874E-13

-1.98804713544E-12

-1.98804850238E-11

-1.98806217180E-10

-0.00000000198819886437

-0.0000000198956562364

-0.000000200321652762

-0.00000213800535957

-0.0000326762521589

3.27988923707E-30

8.81620790832E-14

8.81620789730E-13

8.81620778708E-12

8.81620668487E-11

0.000000000881619566273

0.00000000881608543492

0.0000000881498251899

0.000000880388962326

0.00000868663597280

0.0000694414439273

1.13099628864E-31

4.63981159513E-14

4.63981165588E-13

4.63981226334E-12

4.63981833790E-11

0.000000000463987908352

0.00000000464048653567

0.0000000464656064883

0.000000470726072383

0.00000530992672531

0.000106885408600

3.76998762882E-33

-4.13467904020E-13

-4.13467903782E-12

-4.13467901408E-11

-0.000000000413467877659

-0.00000000413467640175

-0.0000000413465265028

-0.000000413441483749

-0.00000413200690203

-0.0000410495847765

-0.000355577741558

1.21612504155E-34

-5.66858222391E-14

-5.66858252371E-13

-5.66858552172E-12

-5.66861550181E-11

-0.000000000566891530263

-0.00000000567191330385

-0.0000000570189261868

-0.000000600161489809

-0.00000899062056549

-0.000369687954408

3.80039075485E-36

2.16041905589E-12

2.16041905589E-11

2.16041905593E-10

0.00000000216041905629

0.0000000216041905989

0.000000216041909431

0.00000216041928365

0.0000216040568546

0.000215872174746

0.00199175357147

1.15163356208E-37

-5.47077213909E-13

-5.47077197440E-12

-5.47077032756E-11

-0.000000000547075385908

-0.00000000547058917425

-0.0000000546894232342

-0.000000545247356215

-0.00000528776126910

-0.0000363878979814

0.00124233837477

3.38715753552E-39

-1.25626433413E-11

-1.25626433480E-10

-0.00000000125626434144

-0.0000000125626440785

-0.000000125626507196

-0.00000125627171216

-0.0000125633802464

-0.000125699219759

-0.00126263688985

-0.0122956957964

9.67759295863E-41

8.40257859633E-12

8.40257849583E-11

0.000000000840257749086

0.00000000840256744117

0.0000000840246694420

0.000000840146196927

0.00000839141170106

0.0000829085750100

0.000728054068510

-0.00291910126219

2.68822026629E-42

8.10158740611E-11

0.000000000810158741453

0.00000000810158749874

0.0000000810158834080

0.000000810159676138

0.00000810168096143

0.0000810252238860

0.000811087929800

0.00818868469497

0.0837613814163

7.26546017915E-44

-9.15286631426E-11

-0.000000000915286624639

-0.00000000915286556770

-0.0000000915285878083

-0.000000915279091204

-0.00000915211221816

-0.0000914532468473

-0.000907739013235

-0.00839237669014

-0.0123753895818

1.91196320504E-45

-0.000000000576761196551

-0.00000000576761197451

-0.0000000576761206446

-0.000000576761296404

-0.00000576762195971

-0.0000576771191244

-0.000576861103416

-0.00577756166342

-0.0586297852900

-0.628707423372

4.90246975651E-47

0.000000000955571716719

0.00000000955571711672

0.0000000955571661193

0.000000955571156410

0.00000955566108576

0.0000955515629597

0.000955010776668

0.00949955952176

0.0898797024579

0.346005170544

1.22561743913E-48

0.00000000450869740944

0.0000000450869741897

0.000000450869751430

0.00000450869846761

0.0000450870800063

0.000450880332773

0.00450975628349

0.0451925428938

0.461104613865

5.18460562367

2.98931082714E-50

-0.0000000102595421705

-0.000000102595421294

-0.00000102595417181

-0.0000102595376059

-0.000102594964837

-0.00102590852542

-0.0102549722775

-0.102137744719

-0.979514574288

-5.10900840368

7.11740673129E-52

-0.0000000384760242903

-0.000000384760243955

-0.00000384760254466

-0.0000384760359579

-0.000384761410707

-0.00384771921724

-0.0384877005134

-0.385925159878

-3.96135098279

-46.8048484100

1.65521086774E-53

0.000000116227861718

0.00000116227861353

0.0000116227857706

0.000116227821235

0.00116227456523

0.0116223809326

0.116187329617

1.15821760352

11.2090207909

68.6891875853

3.76184288123E-55

0.000000356115418772

0.00000356115420001

0.0000356115432287

0.000356115555157

0.00356116783848

0.0356129070510

0.356251912476

3.57477862313

36.9486067074

460.737734874

8.35965084718E-57

-0.00000140454749128

-0.0000140454748778

-0.000140454745280

-0.00140454710305

-0.0140454360555

-0.140450862959

-1.40415877660

-14.0065092062

-136.465277745

-927.516816580

1.81731540156E-58

-0.00000354820288308

-0.0000354820289843

-0.000354820305193

-0.00354820458692

-0.0354821993676

-0.354837343270

-3.54990814732

-35.6523075915

-371.594948853

-4924.66176075

3.86662851396E-60

0.0000181898851298

0.000181898850939

0.00181898847341

0.0181898811366

0.181898451611

1.81894853944

18.1858865205

181.497772157

1777.67618340

13012.1386393

8.05547607075E-62

0.0000377112981275

0.000377112983331

0.00377113003895

0.0377113209530

0.377115265879

3.77135829113

37.7341435490

379.394895942

3996.61935891

56902.5880715

1.64397470832E-63

-0.000252879703867

-0.00252879703474

-0.0252879699546

-0.252879660257

-2.52879267376

-25.2875338389

-252.836031788

-2524.41293675

-24832.8174530

-192427.589592

3.28794941663E-65

-0.000422329790981

-0.00422329793938

-0.0422329823508

-0.422330119212

-4.22333076246

-42.2362646294

-422.658317711

-4256.12115341

-45484.8039105

-707403.008826

6.44695964046E-67

0.00377426676588

0.0377426676139

0.377426671649

3.77426626745

37.7426177707

377.421687072

3773.76755817

37692.4954417

372159.752186

3019868.06295

1.23979993086E-68

0.00489160363873

0.0489160368436

0.489160414068

4.89160870390

48.9165433606

489.211065428

4896.67349905

49422.6804194

539466.261062

9413058.26845

2.33924515256E-70

-0.0604307388101

-0.604307387576

-6.04307382329

-60.4307329855

-604.306805109

-6043.01557255

-60424.9038957

-603719.882403

-5980329.73442

-50445247.9343

4.33193546770E-72

-0.0566594041475

-0.566594049025

-5.66594124522

-56.6594879489

-566.602429160

-5666.77925473

-56743.2849198

-574978.118900

-6500075.49449

-133274607.606

7.87624630492E-74

1.03670175242

10.3670175183

103.670174584

1036.70168597

10367.0108724

103669.509927

1036635.15163

10360288.7816

102928880.951

897923432.867

1.40647255445E-75

0.606849098219

6.06849111592

60.6849245327

606.850582677

6068.63956171

60699.7690680

608334.992559

6217036.42925

75490638.2495

1993335271.96

2.46749570956E-77

-19.0269222427

-190.269222369

-1902.69221781

-19026.9215903

-190269.157127

-1902685.69243

-19026267.7956

-190202521.170

-1894768138.29

-17031649388.3

4.25430294752E-79

-4.42173613236

-44.2173638561

-442.173891809

-4421.76424289

-44220.1749090

-442454.996746

-4449874.38446

-47030827.9756

-723070354.932

-31194996106.3

7.21068296190E-81

372.982633737

3729.82633716

37298.2633506

372982.631407

3729826.10412

37298240.0214

372980273.923

3729565793.59

37247662915.3

344046161128.

1.20178049365E-82

-47.3141710721

-473.141659540

-4731.41147732

-47313.6029646

-473084.848783

-4725730.39960

-46745493.2171

-416272077.263

955549405.335

503699141092.

1.97013195680E-84

-7795.99574192

-77959.9574336

-779599.575779

-7795995.90208

-77959973.4494

-779601176.844

-7796155496.61

-77975420891.4

-780633582303.

-7.39446331771E12

3.17763218839E-86

3875.12528713

38751.2517693

387512.407492

3875113.05484

38750028.5403

387390084.361

3862880510.59

37526546856.2

264853251990.

-8.19505248641E12

5.04386061649E-88

173446.620895

1734466.20968

17344662.1695

173446628.962

1734467016.36

17344742826.3

173454683290.

1.73526108724E12

1.74127664895E13

1.68897077763E14

 

Table 2: log10 of absolute values of terms

 

h=1

h=1+1e-10

h=1+1e-9

h=1+1e-8

h=1+1e-7

h=1+1e-6

h=1+1e-5

h=1+1e-4

h=1.001

h=1.01

h=1.1

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

-0.3010

-0.3010

-0.3010

-0.3010

-0.3010

-0.3010

-0.3010

-0.3010

-0.3006

-0.2967

-0.2596

-0.7782

-0.7782

-0.7782

-0.7782

-0.7782

-0.7782

-0.7781

-0.7780

-0.7771

-0.7674

-0.6761

-1.3802

-1.3802

-1.3802

-1.3802

-1.3802

-1.3802

-1.3802

-1.3800

-1.3783

-1.3608

-1.1989

-2.0792

-2.0792

-2.0792

-2.0792

-2.0792

-2.0792

-2.0792

-2.0789

-2.0762

-2.0498

-1.8054

-2.8573

-2.8573

-2.8573

-2.8573

-2.8573

-2.8573

-2.8573

-2.8569

-2.8532

-2.8168

-2.4809

-3.7024

-3.7024

-3.7024

-3.7024

-3.7024

-3.7024

-3.7024

-3.7019

-3.6969

-3.6481

-3.2080

-4.6055

-4.6055

-4.6055

-4.6055

-4.6055

-4.6055

-4.6055

-4.6048

-4.5988

-4.5387

-3.9868

-5.5598

-5.5598

-5.5598

-5.5598

-5.5598

-5.5598

-5.5597

-5.5592

-5.5538

-5.4976

-4.8558

-6.5598

-6.5598

-6.5598

-6.5598

-6.5598

-6.5597

-6.5595

-6.5574

-6.5362

-6.3645

-5.5754

-7.6012

-7.6012

-7.6012

-7.6012

-7.6012

-7.6011

-7.6007

-7.5967

-7.5585

-7.2653

-6.1581

-8.6803

-8.6803

-8.6803

-8.6803

-8.6805

-8.6816

-8.6932

-8.8304

-8.3971

-7.2329

-6.2970

-9.7943

-9.7943

-9.7943

-9.7942

-9.7937

-9.7890

-9.7441

-9.4474

-8.6767

-7.7512

-8.3749

-10.9404

-10.9404

-10.9403

-10.9389

-10.9260

-10.8144

-10.3004

-9.4006

-8.4111

-7.4033

-6.3609

-12.1165

-12.1167

-12.1186

-12.1382

-12.4068

-11.5282

-10.4375

-9.4296

-8.4302

-7.4453

-6.6719

-13.3206

-13.3227

-13.3419

-13.6037

-12.7421

-11.6496

-10.6413

-9.6402

-8.6372

-7.6096

-6.4388

-14.5511

-14.4716

-14.0726

-13.2270

-12.2459

-11.2478

-10.2480

-9.2481

-8.2487

-7.2547

-6.3562

-15.8063

-15.6760

-15.1531

-14.2499

-13.2609

-12.2620

-11.2619

-10.2600

-9.2410

-8.0869

-6.5192

-17.0851

-15.0416

-14.0381

-13.0377

-12.0377

-11.0377

-10.0377

-9.0377

-8.0377

-7.0378

-6.0742

-18.3861

-15.4982

-14.4987

-13.4987

-12.4988

-11.4988

-10.4988

-9.4994

-8.5053

-7.5693

-6.8165

-19.7083

-14.7742

-13.7742

-12.7742

-11.7742

-10.7742

-9.7742

-8.7741

-7.7736

-6.7686

-5.7555

-21.0508

-14.8416

-13.8416

-12.8416

-11.8416

-10.8416

-9.8416

-8.8419

-7.8444

-6.8708

-6.3492

-22.4125

-14.4562

-13.4562

-12.4562

-11.4562

-10.4562

-9.4562

-8.4561

-7.4550

-6.4446

-5.3846

-23.7927

-14.2685

-13.2685

-12.2685

-11.2685

-10.2685

-9.2685

-8.2687

-7.2702

-6.2856

-5.5204

-25.1906

-14.0922

-13.0922

-12.0922

-11.0922

-10.0922

-9.0922

-8.0920

-7.0902

-6.0729

-4.9599

-26.6056

-13.6807

-12.6807

-11.6807

-10.6807

-9.6807

-8.6807

-7.6808

-6.6817

-5.6914

-4.8386

-28.0370

-13.7016

-12.7016

-11.7016

-10.7016

-9.7016

-8.7015

-7.7012

-6.6983

-5.6700

-4.4858

-29.4841

-13.0547

-12.0547

-11.0547

-10.0547

-9.0547

-8.0547

-7.0548

-6.0553

-5.0611

-4.1584

-30.9465

-13.3335

-12.3335

-11.3335

-10.3335

-9.3335

-8.3334

-7.3329

-6.3272

-5.2749

-3.9711

-32.4237

-12.3836

-11.3836

-10.3836

-9.3836

-8.3836

-7.3836

-6.3836

-5.3838

-4.3867

-3.4491

-33.9150

-13.2465

-12.2465

-11.2465

-10.2465

-9.2465

-8.2463

-7.2440

-6.2217

-5.0462

-3.4322

-35.4202

-11.6655

-10.6655

-9.6655

-8.6655

-7.6655

-6.6655

-5.6655

-4.6655

-3.6658

-2.7008

-36.9387

-12.2620

-11.2620

-10.2620

-9.2620

-8.2620

-7.2621

-6.2634

-5.2767

-4.4390

-2.9058

-38.4702

-10.9009

-9.9009

-8.9009

-7.9009

-6.9009

-5.9009

-4.9009

-3.9007

-2.8987

-1.9102

-40.0142

-11.0756

-10.0756

-9.0756

-8.0756

-7.0756

-6.0756

-5.0762

-4.0814

-3.1378

-2.5348

-41.5705

-10.0914

-9.0914

-8.0914

-7.0914

-6.0914

-5.0914

-4.0914

-3.0909

-2.0868

-1.0770

-43.1387

-10.0384

-9.0384

-8.0384

-7.0384

-6.0384

-5.0385

-4.0388

-3.0420

-2.0761

-1.9074

-44.7185

-9.2390

-8.2390

-7.2390

-6.2390

-5.2390

-4.2390

-3.2389

-2.2383

-1.2319

-0.2016

-46.3096

-9.0197

-8.0197

-7.0197

-6.0197

-5.0197

-4.0198

-3.0200

-2.0223

-1.0463

-0.4609

-47.9116

-8.3459

-7.3459

-6.3459

-5.3459

-4.3459

-3.3459

-2.3458

-1.3449

-0.3362

0.7147

-49.5244

-7.9889

-6.9889

-5.9889

-4.9889

-3.9889

-2.9889

-1.9891

-0.9908

-0.0090

0.7083

-51.1477

-7.4148

-6.4148

-5.4148

-4.4148

-3.4148

-2.4148

-1.4147

-0.4135

0.5978

1.6703

-52.7811

-6.9347

-5.9347

-4.9347

-3.9347

-2.9347

-1.9347

-0.9348

0.0638

1.0496

1.8369

-54.4246

-6.4484

-5.4484

-4.4484

-3.4484

-2.4484

-1.4484

-0.4482

0.5532

1.5676

2.6635

-56.0778

-5.8525

-4.8525

-3.8525

-2.8525

-1.8525

-0.8525

0.1474

1.1463

2.1350

2.9673

-57.7406

-5.4500

-4.4500

-3.4500

-2.4500

-1.4500

-0.4500

0.5502

1.5521

2.5701

3.6924

-59.4127

-4.7402

-3.7402

-2.7402

-1.7402

-0.7402

0.2598

1.2597

2.2589

3.2499

4.1143

-61.0939

-4.4235

-3.4235

-2.4235

-1.4235

-0.4235

0.5765

1.5767

2.5791

3.6017

4.7551

-62.7841

-3.5971

-2.5971

-1.5971

-0.5971

0.4029

1.4029

2.4028

3.4022

4.3950

5.2843

-64.4831

-3.3743

-2.3743

-1.3743

-0.3743

0.6257

1.6257

2.6260

3.6290

4.6579

5.8497

-66.1906

-2.4232

-1.4232

-0.4232

0.5768

1.5768

2.5768

3.5768

4.5763

5.5707

6.4800

-67.9066

-2.3105

-1.3105

-0.3105

0.6895

1.6895

2.6895

3.6899

4.6939

5.7320

6.9737

-69.6309

-1.2187

-0.2187

0.7813

1.7813

2.7813

3.7813

4.7812

5.7808

6.7767

7.7028

-71.3633

-1.2467

-0.2467

0.7533

1.7533

2.7533

3.7533

4.7539

5.7597

6.8129

8.1247

-73.1037

0.0157

1.0157

2.0157

3.0157

4.0157

5.0157

6.0156

7.0154

8.0125

8.9532

-74.8519

-0.2169

0.7831

1.7831

2.7831

3.7831

4.7832

5.7841

6.7936

7.8779

9.2996

-76.6077

1.2794

2.2794

3.2794

4.2794

5.2794

6.2794

7.2794

8.2792

9.2776

10.2313

-78.3712

0.6456

1.6456

2.6456

3.6456

4.6456

5.6459

6.6483

7.6724

8.8592

10.4941

-80.1420

2.5717

3.5717

4.5717

5.5717

6.5717

7.5717

8.5717

9.5717

10.5711

11.5366

-81.9202

1.6750

2.6750

3.6750

4.6750

5.6749

6.6745

7.6697

8.6194

8.9803

11.7022

-83.7055

3.8919

4.8919

5.8919

6.8919

7.8919

8.8919

9.8919

10.8920

11.8924

12.8689

-85.4979

3.5883

4.5883

5.5883

6.5883

7.5883

8.5881

9.5869

10.5743

11.4230

12.9136

-87.2972

5.2392

6.2392

7.2392

8.2392

9.2392

10.2392

11.2392

12.2394

13.2409

14.2276

 

The precise growthrate of terms is not yet determined. However, it seems, that the forward differences (along columns) for all documented columns tend to be roughly equal for the fractional heights, perhaps depending on some index-shift.

 

Table 3: forward differences 1'st order of log10 of absolute values of terms

 

h=1

h=1+1e-10

h=1+1e-9

h=1+1e-8

h=1+1e-7

h=1+1e-6

h=1+1e-5

h=1+1e-4

h=1.001

h=1.01

h=1.1

 

 

 

 

 

 

 

 

 

 

 

-0.3010

-0.3010

-0.3010

-0.3010

-0.3010

-0.3010

-0.3010

-0.3010

-0.3006

-0.2967

-0.2596

-0.4771

-0.4771

-0.4771

-0.4771

-0.4771

-0.4771

-0.4771

-0.4771

-0.4765

-0.4707

-0.4164

-0.6021

-0.6021

-0.6021

-0.6021

-0.6021

-0.6021

-0.6021

-0.6020

-0.6012

-0.5935

-0.5229

-0.6990

-0.6990

-0.6990

-0.6990

-0.6990

-0.6990

-0.6990

-0.6989

-0.6980

-0.6889

-0.6065

-0.7782

-0.7782

-0.7782

-0.7782

-0.7782

-0.7782

-0.7781

-0.7780

-0.7770

-0.7670

-0.6755

-0.8451

-0.8451

-0.8451

-0.8451

-0.8451

-0.8451

-0.8451

-0.8450

-0.8437

-0.8313

-0.7271

-0.9031

-0.9031

-0.9031

-0.9031

-0.9031

-0.9031

-0.9031

-0.9030

-0.9019

-0.8906

-0.7788

-0.9542

-0.9542

-0.9542

-0.9542

-0.9542

-0.9542

-0.9543

-0.9543

-0.9550

-0.9590

-0.8690

-1.0000

-1.0000

-1.0000

-1.0000

-1.0000

-1.0000

-0.9998

-0.9982

-0.9825

-0.8668

-0.7196

-1.0414

-1.0414

-1.0414

-1.0414

-1.0414

-1.0414

-1.0412

-1.0394

-1.0222

-0.9008

-0.5827

-1.0792

-1.0792

-1.0792

-1.0792

-1.0793

-1.0805

-1.0925

-1.2336

-0.8386

0.0324

-0.1389

-1.1139

-1.1139

-1.1139

-1.1139

-1.1133

-1.1074

-1.0509

-0.6170

-0.2797

-0.5184

-2.0779

-1.1461

-1.1461

-1.1460

-1.1447

-1.1323

-1.0254

-0.5563

0.0468

0.2656

0.3480

2.0140

-1.1761

-1.1763

-1.1784

-1.1993

-1.4808

-0.7138

-0.1371

-0.0290

-0.0191

-0.0421

-0.3110

-1.2041

-1.2060

-1.2233

-1.4655

-0.3353

-0.1213

-0.2037

-0.2106

-0.2069

-0.1643

0.2332

-1.2304

-1.1489

-0.7307

0.3767

0.4962

0.4017

0.3932

0.3920

0.3885

0.3550

0.0825

-1.2553

-1.2044

-1.0804

-1.0230

-1.0150

-1.0142

-1.0139

-1.0119

-0.9923

-0.8322

-0.1630

-1.2788

0.6344

1.1150

1.2122

1.2232

1.2243

1.2242

1.2223

1.2033

1.0491

0.4450

-1.3010

-0.4566

-0.4606

-0.4610

-0.4610

-0.4611

-0.4611

-0.4617

-0.4676

-0.5315

-0.7423

-1.3222

0.7240

0.7245

0.7246

0.7246

0.7246

0.7246

0.7253

0.7317

0.8007

1.0610

-1.3424

-0.0674

-0.0674

-0.0674

-0.0674

-0.0674

-0.0675

-0.0678

-0.0708

-0.1022

-0.5937

-1.3617

0.3854

0.3854

0.3854

0.3854

0.3854

0.3854

0.3858

0.3894

0.4262

0.9646

-1.3802

0.1877

0.1877

0.1877

0.1877

0.1877

0.1877

0.1874

0.1848

0.1590

-0.1358

-1.3979

0.1763

0.1763

0.1763

0.1763

0.1763

0.1764

0.1767

0.1800

0.2127

0.5605

-1.4150

0.4115

0.4115

0.4115

0.4115

0.4115

0.4115

0.4112

0.4085

0.3815

0.1213

-1.4314

-0.0209

-0.0209

-0.0209

-0.0209

-0.0209

-0.0209

-0.0205

-0.0166

0.0214

0.3528

-1.4472

0.6469

0.6469

0.6469

0.6469

0.6469

0.6468

0.6465

0.6429

0.6088

0.3274

-1.4624

-0.2788

-0.2788

-0.2788

-0.2788

-0.2788

-0.2787

-0.2781

-0.2719

-0.2138

0.1873

-1.4771

0.9499

0.9499

0.9499

0.9499

0.9499

0.9499

0.9493

0.9434

0.8882

0.5220

-1.4914

-0.8630

-0.8630

-0.8630

-0.8630

-0.8629

-0.8627

-0.8604

-0.8379

-0.6595

0.0169

-1.5051

1.5811

1.5811

1.5811

1.5811

1.5810

1.5808

1.5785

1.5563

1.3804

0.7314

-1.5185

-0.5965

-0.5965

-0.5965

-0.5965

-0.5965

-0.5966

-0.5979

-0.6113

-0.7732

-0.2050

-1.5315

1.3610

1.3610

1.3610

1.3610

1.3610

1.3612

1.3625

1.3761

1.5403

0.9955

-1.5441

-0.1747

-0.1747

-0.1747

-0.1747

-0.1747

-0.1747

-0.1753

-0.1807

-0.2391

-0.6245

-1.5563

0.9842

0.9842

0.9842

0.9842

0.9842

0.9842

0.9848

0.9905

1.0511

1.4578

-1.5682

0.0530

0.0530

0.0530

0.0530

0.0530

0.0529

0.0526

0.0489

0.0107

-0.8305

-1.5798

0.7994

0.7994

0.7994

0.7994

0.7994

0.7995

0.7999

0.8038

0.8442

1.7059

-1.5911

0.2193

0.2193

0.2193

0.2193

0.2193

0.2192

0.2189

0.2160

0.1855

-0.2594

-1.6021

0.6738

0.6738

0.6738

0.6738

0.6738

0.6738

0.6741

0.6774

0.7101

1.1756

-1.6128

0.3571

0.3571

0.3571

0.3571

0.3571

0.3570

0.3568

0.3541

0.3272

-0.0064

-1.6232

0.5741

0.5741

0.5741

0.5741

0.5741

0.5741

0.5744

0.5773

0.6068

0.9620

-1.6335

0.4801

0.4801

0.4801

0.4801

0.4801

0.4801

0.4798

0.4773

0.4517

0.1666

-1.6435

0.4863

0.4863

0.4863

0.4863

0.4863

0.4863

0.4866

0.4895

0.5180

0.8266

-1.6532

0.5959

0.5959

0.5959

0.5959

0.5959

0.5959

0.5957

0.5931

0.5674

0.3039

-1.6628

0.4025

0.4025

0.4025

0.4025

0.4025

0.4025

0.4028

0.4058

0.4350

0.7251

-1.6721

0.7098

0.7098

0.7098

0.7098

0.7098

0.7098

0.7095

0.7068

0.6798

0.4220

-1.6812

0.3166

0.3166

0.3166

0.3166

0.3166

0.3167

0.3170

0.3202

0.3518

0.6408

-1.6902

0.8264

0.8264

0.8264

0.8264

0.8264

0.8264

0.8261

0.8231

0.7933

0.5291

-1.6990

0.2227

0.2227

0.2227

0.2227

0.2227

0.2228

0.2232

0.2269

0.2628

0.5654

-1.7076

0.9512

0.9512

0.9512

0.9512

0.9512

0.9511

0.9508

0.9472

0.9129

0.6303

-1.7160

0.1126

0.1126

0.1126

0.1126

0.1126

0.1127

0.1131

0.1177

0.1612

0.4937

-1.7243

1.0918

1.0918

1.0918

1.0918

1.0918

1.0918

1.0913

1.0869

1.0448

0.7291

-1.7324

-0.0280

-0.0280

-0.0280

-0.0280

-0.0280

-0.0279

-0.0273

-0.0212

0.0362

0.4219

-1.7404

1.2624

1.2624

1.2624

1.2624

1.2624

1.2623

1.2617

1.2557

1.1996

0.8285

-1.7482

-0.2326

-0.2326

-0.2326

-0.2326

-0.2326

-0.2325

-0.2315

-0.2218

-0.1346

0.3463

-1.7559

1.4963

1.4963

1.4963

1.4963

1.4963

1.4962

1.4952

1.4856

1.3997

0.9317

-1.7634

-0.6338

-0.6338

-0.6338

-0.6338

-0.6337

-0.6335

-0.6310

-0.6068

-0.4184

0.2628

-1.7709

1.9261

1.9261

1.9261

1.9261

1.9261

1.9258

1.9233

1.8993

1.7119

1.0425

-1.7782

-0.8967

-0.8967

-0.8967

-0.8967

-0.8967

-0.8972

-0.9019

-0.9523

-1.5908

0.1656

-1.7853

2.2169

2.2169

2.2169

2.2169

2.2169

2.2174

2.2221

2.2726

2.9122

1.1667

-1.7924

-0.3036

-0.3036

-0.3036

-0.3036

-0.3036

-0.3037

-0.3050

-0.3176

-0.4694

0.0446

-1.7993

1.6509

1.6509

1.6509

1.6509

1.6509

1.6510

1.6523

1.6650

1.8179

1.3141

 

It is interesting to see the ratio of consecutive coefficients graphically.

Formal powerseries, whose consecutive coefficients approach a constant ratio have a finite radius of convergence. Formal powerseries, whose radius of convergence is infinite must have a hypergeometric rate of decrease, as for instance the formal powerseries for exp(x). Then there are formal powerseries whose ratio increases with the index, for instance the Eulerian powerseries 1!x – 2!x^2+3!x^3-… Such formal powerseries have convergence-radius zero.

As I.N. Baker has shown, all fractional iterates of f(x)=exp(x)-1 have convergence-radius zero. But they show an interesting pattern of the increase of the ratio of concecutive oefficients. In the following plot I show the log10 of the ratios (actually of the absoulute value) in a double-logarithmic scale.

The blue line represents the f°1(x) at the integer height 1; the magenta line that of f°1+µ(x), with µ=10^-10 which means a very near-integer-iterate.

The blue line decreases linearly with the index k, which reflects, that the ratio r(k) of two coefficients of the powerseries for exp(x)-1 at the index k is just (k-1)!/k! = 1/k and thus the represented function is entire. The same ratios in the fractional iterate follow that of the integer iterate, but then begin to deviate and show oscillating behaviour. Additionally, that oscillation is also overlaid by an increase which seems to be linear in this scale.

If we look at a fractional iterate farther away from the integer-iterate we get the next plot, where now the green line indicates f°1+µ(x) where µ=10^-1. We get the same pattern, only that the point of deviation and the beginning of oscillation is at an earlier index.

 

This suggests another, surprising, interpretation of the exponential-series itself: the powerseries of integer-iterates are only limits, where the index of beginning of increase is shifted to infinity – and thus does no more appear…

 


 

For a computation of f°0.5(x) see the example at [6], where I computed the series using Euler-summation of order 2.5.

Additional remark:

If f(x) = exp(x) –1 is generalized to arbitrary bases fb(x) = bx-1, the terms of the powerseries for exp(x)-1 must be scaled by powers of u=log(b). If u<>1 (or is left symbolically) an eigensystem-decomposition of the associated triangular matrix Ub can be performed and the diagonal (and eigenvalues) are the powers of u. An arbitrary height h of iteration can then be determined by substituting u by the h'th power of u in the set of eigenvalues. Then the fractional power of Ubh can be symbolically described and in its second column we have the coefficients for the associated powerseries for the continuous iterated fb°h(x).

Here are the first four terms of the powerseries of height h computed via the symbolic eigensystem-decomposition of the U-tetration-matrix S2b (see other articles in tetration-index [5])

 

          fb°h (x)         = uh                * x /1!
                            + uh u (uh-1)/(u-1)                *x2 /2!
                            + uh u2(uh-1)/(u-1)* [(uh-1)(u+1)+(uh-u)]/(u2-1)   * x3/3!
                            + ...

We see, that, if u=1 , which is the case when fb(x) = exp(x)-1, the coefficients at x have zeros in the denominator, and produce a singularity, if not uh is a positive integer power of u and numerators cancel the denominators. By shift of the parameter x this is convertible to the usual-tetration with base eta=e^(1/e) and answers then the same question for this version of tetration.

Thus the eigensystem-decomposition may be a good approach to go to study the general question of integer vs fractional iteration in more detail.

Gottfried Helms, 5.1.2008


References

[1] Erdös, Paul , Jabotinsky, Eri;  On analytic iteration , J. Anal. Math. 8, 361-376 (1961)  (also online at digicenter göttingen)

[2] Baker, I.N.; Zusammensetzung ganzer Funktionen, Math Zeitschr. Bd. 69 pp 121-163 (1958)  (also online at digicenter göttingen)

[3] Knopp, Konrad; Theorie und Anwendung unendlicher Reihen, Springer, 1964  (also online at digicenter göttingen)

[4] Hardy, G. H.; Divergent Series; New York: Oxford University Press, 1949


[5] Helms:Tetration-Index           http://go.helms-net.de/math/tetdocs/index

[6] Helms:U-tetration, h=1/2       http://go.helms-net.de/math/tetdocs/CoefficientsForUTetration.htm


Snippets

[1] Erdös/Jabotinsky Pg 362


[1] Erdös/Jabotinsky Pg 376


[2] Baker Pg 161

 


Gottfried Helms,  8.12.2010, first version: 05.01.2008